Featured Research

from universities, journals, and other organizations

Wearable depth-sensing projection system makes any surface capable of multitouch interaction

Date:
October 25, 2011
Source:
Carnegie Mellon University
Summary:
OmniTouch, a wearable projection system developed by researchers, enables users to turn pads of paper, walls or even their own hands, arms and legs into graphical, interactive surfaces. OmniTouch employs a depth-sensing camera to track the user's fingers on everyday surfaces. This allows users to control interactive applications by tapping or dragging their fingers, much as they would with touchscreens found on smartphones or tablet computers.

OmniTouch, a wearable projection system, enables users to turn pads of paper, walls or even their own hands, arms and legs into graphical, interactive surfaces.
Credit: Chris Harrison

OmniTouch, a wearable projection system developed by researchers at Microsoft Research and Carnegie Mellon University, enables users to turn pads of paper, walls or even their own hands, arms and legs into graphical, interactive surfaces.

Related Articles


OmniTouch employs a depth-sensing camera, similar to the Microsoft Kinect, to track the user's fingers on everyday surfaces. This allows users to control interactive applications by tapping or dragging their fingers, much as they would with touchscreens found on smartphones or tablet computers. The projector can superimpose keyboards, keypads and other controls onto any surface, automatically adjusting for the surface's shape and orientation to minimize distortion of the projected images.

"It's conceivable that anything you can do on today's mobile devices, you will be able to do on your hand using OmniTouch," said Chris Harrison, a Ph.D. student in Carnegie Mellon's Human-Computer Interaction Institute. The palm of the hand could be used as a phone keypad, or as a tablet for jotting down brief notes. Maps projected onto a wall could be panned and zoomed with the same finger motions that work with a conventional multitouch screen.

Harrison was an intern at Microsoft Research when he developed OmniTouch in collaboration with Microsoft Research's Hrvoje Benko and Andrew D. Wilson. Harrison will describe the technology Oct. 19 at the Association for Computing Machinery's Symposium on User Interface Software and Technology (UIST) in Santa Barbara, Calif.

A video demonstrating OmniTouch and additional downloadable media are available at: http://www.chrisharrison.net/index.php/Research/OmniTouch

The OmniTouch device includes a short-range depth camera and laser pico-projector and is mounted on a user's shoulder. But Harrison said the device ultimately could be the size of a deck of cards, or even a matchbox, so that it could fit in a pocket, be easily wearable, or be integrated into future handheld devices.

"With OmniTouch, we wanted to capitalize on the tremendous surface area the real world provides," said Benko, a researcher in Microsoft Research's Adaptive Systems and Interaction group. "We see this work as an evolutionary step in a larger effort at Microsoft Research to investigate the unconventional use of touch and gesture in devices to extend our vision of ubiquitous computing even further. Being able to collaborate openly with academics and researchers like Chris on such work is critical to our organization's ability to do great research -- and to advancing the state of the art of computer user interfaces in general."

Harrison previously worked with Microsoft Research to develop Skinput, a technology that used bioacoustic sensors to detect finger taps on a person's hands or forearm. Skinput thus enabled users to control smartphones or other compact computing devices.

The optical sensing used in OmniTouch, by contrast, allows a wide range of interactions, similar to the capabilities of a computer mouse or touchscreen. It can track three-dimensional motion on the hand or other commonplace surfaces, and can sense whether fingers are "clicked" or hovering. What's more, OmniTouch does not require calibration -- users can simply wear the device and immediately use its features. No instrumentation of the environment is needed; only the wearable device is needed.


Story Source:

The above story is based on materials provided by Carnegie Mellon University. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Mellon University. "Wearable depth-sensing projection system makes any surface capable of multitouch interaction." ScienceDaily. ScienceDaily, 25 October 2011. <www.sciencedaily.com/releases/2011/10/111017111557.htm>.
Carnegie Mellon University. (2011, October 25). Wearable depth-sensing projection system makes any surface capable of multitouch interaction. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2011/10/111017111557.htm
Carnegie Mellon University. "Wearable depth-sensing projection system makes any surface capable of multitouch interaction." ScienceDaily. www.sciencedaily.com/releases/2011/10/111017111557.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Brand Blocker' Glasses Blur Ads in Real Time

'Brand Blocker' Glasses Blur Ads in Real Time

Buzz60 (Jan. 28, 2015) A team of college students design and build a pair of goggles that will obscure any corporate branding from your field of vision. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com
iPhone Sales Give Apple Record Quarter

iPhone Sales Give Apple Record Quarter

AP (Jan. 28, 2015) Apple says staggering consumer demand for new iPhones has helped the company report record-smashing earnings for its latest quarter and primed its stock for a rally. (Jan. 28) Video provided by AP
Powered by NewsLook.com
Google Fiber Pressures Incumbent ISPs With Latest Expansion

Google Fiber Pressures Incumbent ISPs With Latest Expansion

Newsy (Jan. 28, 2015) Google’s newly announced Fiber cities put it in closer competition with the likes of AT&T and Time Warner Cable. Video provided by Newsy
Powered by NewsLook.com
Google High-Speed Service Coming to 4 Cities

Google High-Speed Service Coming to 4 Cities

AP (Jan. 28, 2015) Google is expanding its fiber-optic high-speed internet service to four cities in the Southeastern US. The company selected Atlanta, Charlotte, Raleigh and Nashville and their surrounding communities. (Jan. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins