Featured Research

from universities, journals, and other organizations

New insights into insulin resistance could lead to better drugs for diabetics

Date:
October 21, 2011
Source:
American Society for Microbiology
Summary:
New research moves us closer to developing drugs that could mitigate diabetes. Diabetes afflicts an estimated 26 million Americans, while 79 million have prediabetes. In other words, one in three Americans confronts this disease. Diabetes raises the risk of heart disease and stroke by as much as fourfold, and it is the leading cause of blindness among adults 20-74. It is also the leading cause of kidney failure.

Research published in the October Molecular and Cellular Biology moves us closer to developing drugs that could mitigate diabetes.

Related Articles


Diabetes afflicts an estimated 26 million Americans, while 79 million have prediabetes. In other words, one in three Americans confronts this disease. Diabetes raises the risk of heart disease and stroke by as much as fourfold, and it is the leading cause of blindness among adults 20-74. It is also the leading cause of kidney failure.

In earlier research, four years ago another team of researchers showed that they could boost insulin sensitivity in experimental rodents by giving the animals a drug called myriocin. People with diabetes have a condition called insulin resistance, which renders them poorly able to process sugar. That results in high blood sugar, which damages the blood vessels, leading to many of diabetes' ills. In their study, that team, led by Johannes M. Aerts of the University of Amsterdam, observed a decrease in a compound called ceramide, which sits on cell membranes in the circulatory system, which they postulated was responsible for the rise in insulin sensitivity.

In the new study, Xian-Cheng Jiang of Downstate Medical Center, Brooklyn, NY, and his collaborators set out to confirm this earlier work, using a genetic approach.

The new research provides strong evidence that ceramide was not causing insulin sensitivity, but that another membrane-bound compound, sphingomyelin, might be doing so.

Ceramide is the substrate for the last step in a five step cascade that produces sphingomyelin. In that step an enzyme called sphingomyline synthase 2 (SMS2) cleaves ceramide to produce sphingomyelin. The first enzyme in this pathway is called serine palmitoyltransferase (SPT).

To test the hypothesis that ceramide is involved in modulating insulin resistance the researchers used knockout mice for each of these enzymes. They postulated that (partially) knocking out the first enzyme in the cascade would decrease ceramide levels while knocking out the last enzyme in the sphingomyelin pathway would boost ceramide levels, since that enzyme uses ceramide to produce sphingomyelin. Thus, SPT knockout mice would have greater insulin sensitivity, while SMS knockout mice would have reduced insulin sensitivity.

Surprisingly, while ceramide levels changed as predicted, that change did not influence insulin sensitivity, which was higher in both groups.

The research has important implications for drug development for mitigating diabetes. Myriocin proved highly toxic and major efforts to modify the drug to reduce that toxicity have been fruitless. Myriocin's toxicity probably stems from the fact that it inhibits the first step of the sphingomyelin biosynthetic pathway, affecting all the downstream biology, says Jiang. The discovery that knocking out the last step in the biosynthetic pathway improves insulin sensitivity means that drug treatments could target that last enzyme, SMS, leaving the rest of that biosynthetic pathway to function normally.


Story Source:

The above story is based on materials provided by American Society for Microbiology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Li, H. Zhang, J. Liu, C.-P. Liang, Y. Li, Y. Li, G. Teitelman, T. Beyer, H. H. Bui, D. A. Peake, Y. Zhang, P. E. Sanders, M.-S. Kuo, T.-S. Park, G. Cao, X.-C. Jiang. Reducing Plasma Membrane Sphingomyelin Increases Insulin Sensitivity. Molecular and Cellular Biology, 2011; 31 (20): 4205 DOI: 10.1128/MCB.05893-11

Cite This Page:

American Society for Microbiology. "New insights into insulin resistance could lead to better drugs for diabetics." ScienceDaily. ScienceDaily, 21 October 2011. <www.sciencedaily.com/releases/2011/10/111020164155.htm>.
American Society for Microbiology. (2011, October 21). New insights into insulin resistance could lead to better drugs for diabetics. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2011/10/111020164155.htm
American Society for Microbiology. "New insights into insulin resistance could lead to better drugs for diabetics." ScienceDaily. www.sciencedaily.com/releases/2011/10/111020164155.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Dr. Oz Under Fire For 'Quack Treatments' Yet Again

Dr. Oz Under Fire For 'Quack Treatments' Yet Again

Newsy (Apr. 17, 2015) Ten doctors signed a letter urging Columbia University to drop Dr. Oz as vice chair of its department of surgery, saying he plugs "quack" treatments. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins