Featured Research

from universities, journals, and other organizations

Future 'comb on a chip': Compact frequency comb could go places

Date:
October 27, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have developed a compact laser frequency comb -- a class of extraordinarily precise tools for measuring frequencies of light. The new tiny comb is a step toward user-friendly and ultimately chip-based combs that could enable new applications in astronomical searches for Earth-like planets, high-capacity telecommunications, and possibly portable versions of the most advanced atomic clocks.

Stack of quartz optical 'cavities' -- precisely machined disks of solid quartz crystal -- for use in NIST's compact laser frequency comb. (Only one is actually used.) A low-power infrared laser produces light that travels in a loop inside one of the cavities. Each cavity is 2 millimeters wide and shaped like a flat ellipse.
Credit: S. Papp/NIST

Laser frequency combs -- extraordinarily precise tools for measuring frequencies (or colors) of light -- have helped propel advances in timekeeping, trace gas detection and related physics research to new heights in the past decade. While typical lasers operate at only a single or handful of frequencies, laser frequency combs operate simultaneously at many frequencies, approaching a million for some combs. These combs have very fine, evenly spaced "teeth," each a specific frequency, which can be used like hash marks on a ruler to measure the light emitted by lasers, atoms, stars or other objects. But frequency combs are usually bulky, delicate lab instruments -- about the size of a typical suitcase -- and challenging to operate, which limits their use.

Related Articles


Now, researchers at the National Institute of Standards and Technology (NIST) have developed a compact laser frequency comb, a step toward user-friendly and ultimately chip-based combs that could enable new applications in astronomical searches for Earth-like planets, high-capacity telecommunications, and -- if other components are miniaturized as well -- portable versions of the most advanced atomic clocks. Large frequency combs are best known as the "gears" in today's room-sized versions of these clocks.

NIST's prototype micro-comb consists of a low-power semiconductor laser about the size of a shoebox and a high-quality optical cavity just 2 millimeters wide. A miniature laser like those in DVD players might be substituted in the future to squeeze the whole comb apparatus onto a microchip.

Compact frequency combs have been developed recently by a number of other research groups, but NIST's is the first to use a cavity made of fused silica, or quartz, the most common optical material. This means it could be integrated easily with other optical and photonic components, lead author Scott Papp says.

A full-size frequency comb uses a high-power, ultrafast laser. By contrast, the new compact version relies on a low-power laser and the cavity's unusual properties. The cavity is designed to limit light dispersion and confine the light in a small space to enhance intensity and optical interactions. The infrared laser light travels in a loop inside the cavity, generating a train of very short pulses and a spectrum of additional shades of infrared light. The small cavity, with no moving parts, offers insight into basic processes of frequency combs, which are difficult to observe in large versions.

Among its desirable features, NIST's compact comb has wide spacing between the teeth -- 10 to 100 times wider than that found in typical larger combs. This spacing allows scientists to more easily measure and manipulate the teeth. Of particular interest to project leader Scott Diddams, the widely spaced teeth can be individually read by astronomical instruments. Portable frequency combs can thus be used as ultrastable frequency references in the search for Earth-like planets orbiting distant stars. Portable frequency combs can also have many other important applications. For example, because a frequency comb can simultaneously generate hundreds of telecommunication channels from a single low-power source, a micro-comb might eventually replace individual lasers now used for each channel in fiber-optic telecommunications.

"We hope this is just the beginning and look forward to bigger and better developments," Diddams says. "In the short term we want to learn if this new type of comb can one day replace ultrafast laser-based combs used with NIST's best atomic clocks. And if not, its small size will likely lead to other opportunities."

The research was supported in part by the Defense Advanced Research Projects Agency.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. S.B. Papp, S.A. Diddams. Spectral and temporal characterization of a fused-quartz microresonator optical frequency comb. Physical Review A, Forthcoming

Cite This Page:

National Institute of Standards and Technology (NIST). "Future 'comb on a chip': Compact frequency comb could go places." ScienceDaily. ScienceDaily, 27 October 2011. <www.sciencedaily.com/releases/2011/10/111026162655.htm>.
National Institute of Standards and Technology (NIST). (2011, October 27). Future 'comb on a chip': Compact frequency comb could go places. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2011/10/111026162655.htm
National Institute of Standards and Technology (NIST). "Future 'comb on a chip': Compact frequency comb could go places." ScienceDaily. www.sciencedaily.com/releases/2011/10/111026162655.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins