Featured Research

from universities, journals, and other organizations

To diagnose heart disease, visualization experts recommend a simpler approach

Date:
November 1, 2011
Source:
Harvard University
Summary:
A team of computer scientists, physicists, and physicians has developed a simple yet powerful method of visualizing human arteries that may result in more accurate diagnoses of atherosclerosis and heart disease. The prototype tool, called "HemoVis," creates a 2D diagram of arteries that performs better than the traditional 3D, rainbow-colored model. In a clinical setting, the tool has been shown to increase diagnostic accuracy from 39% to 91%.

With the new visualization, an arterial system that would previously have been reconstructed in 3D (left) is instead deconstructed and shown with each branch separated from the main vessel. Arteries are then represented as 2D branches (right) whose dimensions are proportional to the circumference and length of the corresponding artery. Branching points and relationships between branches are also displayed.
Credit: Image courtesy of Michelle Borkin.

A team of computer scientists, physicists, and physicians at Harvard has developed a simple yet powerful method of visualizing human arteries that may result in more accurate diagnoses of atherosclerosis and heart disease.

The prototype tool, called "HemoVis," creates a 2D diagram of arteries that performs better than the traditional 3D, rainbow-colored model. In a clinical setting, the tool has been shown to increase diagnostic accuracy from 39% to 91%.

Presented Oct. 27 at the IEEE Information Visualization Conference(InfoVis 2011), the new visualization methodoffers insight to clinicians, imaging specialists, engineers, and others in a wide range of fields who need to explore and evaluate complex, branching structures.

"Our goal was to design a visual representation of the data that was as accurate and efficient for patient diagnosis as possible," says lead author Michelle Borkin, a doctoral candidate at the Harvard School of Engineering and Applied Sciences (SEAS). "What we found is that the prettiest, most popular visualization is not always the most effective."

HemoVis takes data from patient-specific blood flow simulations, combined with traditional imaging data, and visually displays a tree diagram of the arteries with areas of disease highlighted to assist in diagnosis.

Tools for artery visualization in both clinical and research settings commonly use 3D models that portray the shape and spatial arrangement of vessels of interest. These complex tools require users to rotate the models to get a complete perspective of spatial orientation.

By contrast, the new visualization requires no such rotation or interaction. The tool utilizes 2D, circumference-adjusted cylindrical cross sections arranged in tree diagrams.

Though this visualization method may seem less high-tech, the team demonstrated through quantitative evaluation with medical experts that the 2D model is actually more accurate and efficient for patient diagnosis.

"In the 3D case, the more complex and branched the arteries were, the longer it took to complete the patient diagnosis, and the lower the accuracy was," Borkin reflects. "In the 2D representation, it didn't matter how many branches we had or how complex they were -- we got consistently fast, accurate results. We weren't expecting that."

Tree diagrams are hardly new, as evolutionary biologists will attest, but scientists in many fields are using them to solve a range of very modern and complex problems. In fact, Borkin applied her own experience in astronomy and physics to transform the concept of visualization for SEAS' Multiscale Hemodynamics research group. In prior work, she had used a very similar type of tree diagram to determine the structure of nebulae in outer space.

"With the consultation and cooperation of clinicians, we were able to draw on fairly well known visualization techniques and principles from computer science to solve a practical clinical problem," says Hanspeter Pfister, Gordon McKay Professor of the Practice of Computer Science at SEAS.

Borkin, Pfister, and their colleagues relied on the input of physicians and others with clinical or laboratory imaging experience throughout the process. Through extensive surveys and interviews, they identified the most popular options for display, accurate layout, and coloring of these arterial projections.

However, Borkin drew on well supported research that is less well known outside the visualization community:

"For years, visualization, computer science, and psychology researchers have identified that color is critical for conveying the value of data, but that the rainbow coloring is not well-attuned to the human visual system."

Accordingly, HemoVis departs from the traditional practice of rainbow color-coding in favor of a graded single-color scheme (red to black) that can represent placement along a continuum.

In tests, diagnostic accuracy, as measured by the proportion of diseased areas identified, increased dramatically with the new color scheme.

Widespread adoption of visual representations like those in HemoVis could have the effect of not only optimizing tasks that are critical for doctors, but also changing long-entrenched mindsets and making scientists "think twice" about their assumptions in data visualization, Borkin says.

"This approach to visualization design and validation is broadly applicable in medicine, engineering, and science," notes Pfister. "We hope that people will use this process as a template for transforming their own visualizations."

Borkin and Pfister acknowledged that while HemoVis represents an important step forward, traditional 3D artery models still play a role, particularly in providing a spatially intuitive tool for surgical planning.

With this in mind, the next steps for this research include further development and optimization of the 2D tool and investigation into how it might complement, rather than replace, its 3D counterpart.

A paper about this work will be published later this year in the journal IEEE Transactions on Visualization and Computer Graphics.


Story Source:

The above story is based on materials provided by Harvard University. The original article was written by Mureji Fatunde. Note: Materials may be edited for content and length.


Cite This Page:

Harvard University. "To diagnose heart disease, visualization experts recommend a simpler approach." ScienceDaily. ScienceDaily, 1 November 2011. <www.sciencedaily.com/releases/2011/10/111027145902.htm>.
Harvard University. (2011, November 1). To diagnose heart disease, visualization experts recommend a simpler approach. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/10/111027145902.htm
Harvard University. "To diagnose heart disease, visualization experts recommend a simpler approach." ScienceDaily. www.sciencedaily.com/releases/2011/10/111027145902.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com
How to Master Motherhood With the Best Work/Life Balance

How to Master Motherhood With the Best Work/Life Balance

TheStreet (Apr. 22, 2014) In the U.S., there are more than 11 million couples trying to conceive at any given time. From helping celebrity moms like Bethanny Frankel to ordinary soon-to-be-moms, TV personality and parenting expert, Rosie Pope, gives you the inside scoop on mastering motherhood. London-born entrepreneur Pope is the creative force behind Rosie Pope Maternity and MomPrep. She explains why being an entrepreneur offers the best life balance for her and tips for all types of moms. Video provided by TheStreet
Powered by NewsLook.com
Catching More Than Fish: Ugandan Town Crippled by AIDS

Catching More Than Fish: Ugandan Town Crippled by AIDS

AFP (Apr. 22, 2014) The village of Kasensero on the shores of Lake Victoria was where HIV-AIDS was first discovered in Uganda. Its transient population of fishermen and sex workers means the nationwide programme to combat the virus has had little impact. Duration: 02:30 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins