Featured Research

from universities, journals, and other organizations

New hybrid technology could bring 'quantum information systems'

Date:
October 31, 2011
Source:
Purdue University
Summary:
The merging of two technologies under development -- plasmonics and nanophotonics -- is promising the emergence of new "quantum information systems" far more powerful than today's computers.

Structures called "metamaterials" and the merging of two technologies under development are promising the emergence of new "quantum information systems" far more powerful than today's computers. The concept hinges on using single photons – the tiny particles that make up light – for switching and routing in future computers that might harness the exotic principles of quantum mechanics. The image at left depicts a "spherical dispersion" of light in a conventional material, and the image at right shows the design of a metamaterial that has a "hyperbolic dispersion" not found in any conventional material, potentially producing quantum-optical applications.
Credit: Zubin Jacob

The merging of two technologies under development -- plasmonics and nanophotonics -- is promising the emergence of new "quantum information systems" far more powerful than today's computers.

Related Articles


The technology hinges on using single photons -- the tiny particles that make up light -- for switching and routing in future computers that might harness the exotic principles of quantum mechanics.

The quantum information processing technology would use structures called "metamaterials," artificial nanostructured media with exotic properties.

The metamaterials, when combined with tiny "optical emitters," could make possible a new hybrid technology that uses "quantum light" in future computers, said Vladimir Shalaev, scientific director of nanophotonics at Purdue University's Birck Nanotechnology Center and a distinguished professor of electrical and computer engineering.

The concept is described in an article published on October 28 in the journal Science. The article appeared in the magazine's Perspectives section and was written by Shalaev and Zubin Jacob, an assistant professor of electrical and computer engineering at the University of Alberta, Canada.

"A seamless interface between plasmonics and nanophotonics could guarantee the use of light to overcome limitations in the operational speed of conventional integrated circuits," Shalaev said.

Researchers are proposing the use of "plasmon-mediated interactions," or devices that manipulate individual photons and quasiparticles called plasmons that combine electrons and photons.

One of the approaches, pioneered at Harvard University, is a tiny nanowire that couples individual photons and plasmons. Another approach is to use hyperbolic metamaterials, suggested by Jacob; Igor Smolyaninov, a visiting research scientist at the University of Maryland; and Evgenii Narimanov, an associate professor of electrical and computer engineering at Purdue. Quantum-device applications using building blocks for such hyperbolic metamaterials have been demonstrated in Shalaev's group.

"We would like to record and read information with single photons, but we need a very efficient source of single photons," Shalaev said. "The challenge here is to increase the efficiency of generation of single photons in a broad spectrum, and that is where plasmonics and metamaterials come in."

Today's computers work by representing information as a series of ones and zeros, or binary digits called "bits."

Computers based on quantum physics would have quantum bits, or "qubits," that exist in both the on and off states simultaneously, dramatically increasing the computer's power and memory. Quantum computers would take advantage of a strange phenomenon described by quantum theory called "entanglement." Instead of only the states of one and zero, there are many possible "entangled quantum states" in between one and zero.

An obstacle in developing quantum information systems is finding a way to preserve the quantum information long enough to read and record it. One possible solution might be to use diamond with "nitrogen vacancies," defects that often occur naturally in the crystal lattice of diamonds but can also be produced by exposure to high-energy particles and heat.

"The nitrogen vacancy in diamond operates in a very broad spectral range and at room temperature, which is very important," Shalaev said.

The work is part of a new research field, called diamond photonics. Hyperbolic metamaterials integrated with nitrogen vacancies in diamond are expected to work as efficient "guns" of single photons generated in a broad spectral range, which could bring quantum information systems, he said.


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Emil Venere. Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Jacob, V. M. Shalaev. Plasmonics Goes Quantum. Science, 2011; 334 (6055): 463 DOI: 10.1126/science.1211736

Cite This Page:

Purdue University. "New hybrid technology could bring 'quantum information systems'." ScienceDaily. ScienceDaily, 31 October 2011. <www.sciencedaily.com/releases/2011/10/111028142510.htm>.
Purdue University. (2011, October 31). New hybrid technology could bring 'quantum information systems'. ScienceDaily. Retrieved December 28, 2014 from www.sciencedaily.com/releases/2011/10/111028142510.htm
Purdue University. "New hybrid technology could bring 'quantum information systems'." ScienceDaily. www.sciencedaily.com/releases/2011/10/111028142510.htm (accessed December 28, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Sunday, December 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tor Is The Next Target For Hackers Who Hit Xbox, Playstation

Tor Is The Next Target For Hackers Who Hit Xbox, Playstation

Newsy (Dec. 27, 2014) — The Lizard Squad, a notorious prankstery hacker collective, is apparently threatening the anonymizing Tor network. But can they do any damage? Video provided by Newsy
Powered by NewsLook.com
Christmas Gifted Drones Are Already Causing Problems

Christmas Gifted Drones Are Already Causing Problems

Newsy (Dec. 25, 2014) — Commercial drones were a popular gift this Christmas, but flying one is harder than it looks, and the results can range from comical to catastrophic. Video provided by Newsy
Powered by NewsLook.com
Facebook Facing Another Class Action Lawsuit

Facebook Facing Another Class Action Lawsuit

Newsy (Dec. 25, 2014) — A California district court judge ruled Tuesday to move forward with a class action lawsuit against Facebook over private messaging and advertising. Video provided by Newsy
Powered by NewsLook.com
PlayStation Games Coming To Samsung Smart TV

PlayStation Games Coming To Samsung Smart TV

Newsy (Dec. 24, 2014) — Soon you'll be able to access PlayStation games without actually owning a PlayStation. PS3 games will soon be available on Samsung's Smart TV. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins