Featured Research

from universities, journals, and other organizations

'Protein microarrays' may reveal new weapons against malaria

Date:
November 2, 2011
Source:
Walter and Eliza Hall Institute
Summary:
A new research technology is revealing how humans develop immunity to malaria, and could assist programs aimed at eradicating this parasitic disease.

A new research technology is revealing how humans develop immunity to malaria, and could assist programs aimed at eradicating this parasitic disease.

Dr Alyssa Barry from the Walter and Eliza Hall Institute's Infection and Immunity division is using 'protein microarray' technology to screen human blood serum samples for immunity to proteins produced by the malaria-causing Plasmodium falciparum parasite. Her research, which determines a person's immunity to hundreds of proteins simultaneously, has been published in the journal Molecular and Cellular Proteomics this month.

Malaria is a mosquito-borne disease that affects more than 500 million people each year. It causes more than one million deaths, mostly in children under five years of age.

Dr Barry is investigating how humans living in countries where malaria is prevalent, such as Papua New Guinea, establish immunity that protects them from developing malaria.

The malaria parasite has evolved many ways to evade the immune system, Dr Barry said. "We know that one protein, called PfEMP1, that is particularly important for the host immune response can be produced in many different varieties, and these can be altered by the parasite to avoid detection by the immune system."

Dr Barry and colleagues at the Queensland Institute of Medical Research, the Papua New Guinea Institute of Medical Research and the University of California Irvine adapted existing protein microarray technology to allow small samples of human serum (less than one hundredth of a millilitre) to be tested simultaneously against hundreds of variants of PfEMP1 to determine to which variants the person was immune.

Dr Barry said the testing revealed that in a small region of Papua New Guinea where malaria is endemic, children under the age of two are immune to only a few specific variants of PfEMP1 while older children and adults show immunity to an increasing range of PfEMP1 variants.

"Young children are the most vulnerable to malaria," she said. "Our studies show that this is partly because they have not developed immunity to the many different malaria variants to which they are exposed. As people get older, they become immune to a wider spectrum of malaria parasites, and so when they are infected they develop milder disease and eventually do not develop disease at all, although they can still be infected."

The research team is now undertaking a larger study that will screen more people from other regions of Papua New Guinea, and will screen a wider variety of Plasmodium protein variants.

Dr Barry said she hoped the research would lead to the development of a diagnostic test for susceptibility to malaria, and also determine which proteins might be the best to use as the basis for a malaria vaccine. "We currently do not know how people become immune to malaria," she said. "Our protein microarray technology could assist in monitoring malaria control and elimination programs, by showing when a population becomes more susceptible to the disease as a result of waning immunity."

The research was supported by the National Health and Medical Research Council, the National Institutes of Health (US), the Wellcome Trust (UK), the Victorian Endowment for Science Knowledge and Innovation (VESKI), Pfizer Australia, and the Victorian Government. The research was conducted while Dr Barry was employed by the Burnet Institute.


Story Source:

The above story is based on materials provided by Walter and Eliza Hall Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. E. Barry, A. Trieu, F. J. I. Fowkes, J. Pablo, M. Kalantari-Dehaghi, A. Jasinskas, X. Tan, M. A. Kayala, L. Tavul, P. M. Siba, K. P. Day, P. Baldi, P. L. Felgner, D. L. Doolan. The stability and complexity of antibody responses to the major surface antigen of Plasmodium falciparum are associated with age in a malaria endemic area. Molecular & Cellular Proteomics, 2011; DOI: 10.1074/mcp.M111.008326

Cite This Page:

Walter and Eliza Hall Institute. "'Protein microarrays' may reveal new weapons against malaria." ScienceDaily. ScienceDaily, 2 November 2011. <www.sciencedaily.com/releases/2011/11/111101095400.htm>.
Walter and Eliza Hall Institute. (2011, November 2). 'Protein microarrays' may reveal new weapons against malaria. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/11/111101095400.htm
Walter and Eliza Hall Institute. "'Protein microarrays' may reveal new weapons against malaria." ScienceDaily. www.sciencedaily.com/releases/2011/11/111101095400.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins