Featured Research

from universities, journals, and other organizations

Can metals remember their shape at nanoscale, too?

Date:
November 9, 2011
Source:
Springer Science+Business Media
Summary:
Physicists have now visualized changes in shape memory materials down to the nanometric scale.

Related Articles


Metallic alloys can be stretched or compressed in such a way that they stay deformed once the strain on the material has been released. Only shape memory alloys, however, can return to their original shape after being heated above a specific temperature.

For the first time, the authors determine the absolute values of temperatures at which shape memory nanospheres start changing back to their memorised shape -- undergoing so-called structural phase transition, which depends on the size of particles studied. To achieve this result, they performed a computer simulation using nanoparticles with diameters between 4 and 17 nm made of an alloy of equal proportions of nickel and titanium.

To date, research efforts to establish structural phase transition temperature have mainly been experimental. Thanks to a computerised method known as molecular dynamics simulation, the authors were able to visualise the transformation process of the material during the transition. As the temperature increased, they showed that the material's atomic-scale crystal structure shifted from a lower to a higher level of symmetry. They found that the strong influence of the energy difference between the low- and high-symmetry structure at the surface of the nanoparticle, which differed from that in its interior, could explain the transition.

Most of the prior work on shape memory materials was in macroscopic scale systems and used for applications such as dental braces, stents or oil temperature-regulating devices for bullet trains. Potential new applications include the creation of nanoswitches, where laser irradiation could heat up such shape memory material, triggering a change in its length that would, in turn, function as a switch.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Mutter, P. Nielaba. Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles. The European Physical Journal B, 2011; DOI: 10.1140/epjb/e2011-20661-4

Cite This Page:

Springer Science+Business Media. "Can metals remember their shape at nanoscale, too?." ScienceDaily. ScienceDaily, 9 November 2011. <www.sciencedaily.com/releases/2011/11/111108104623.htm>.
Springer Science+Business Media. (2011, November 9). Can metals remember their shape at nanoscale, too?. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2011/11/111108104623.htm
Springer Science+Business Media. "Can metals remember their shape at nanoscale, too?." ScienceDaily. www.sciencedaily.com/releases/2011/11/111108104623.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins