Featured Research

from universities, journals, and other organizations

Can metals remember their shape at nanoscale, too?

Date:
November 9, 2011
Source:
Springer Science+Business Media
Summary:
Physicists have now visualized changes in shape memory materials down to the nanometric scale.

Metallic alloys can be stretched or compressed in such a way that they stay deformed once the strain on the material has been released. Only shape memory alloys, however, can return to their original shape after being heated above a specific temperature.

For the first time, the authors determine the absolute values of temperatures at which shape memory nanospheres start changing back to their memorised shape -- undergoing so-called structural phase transition, which depends on the size of particles studied. To achieve this result, they performed a computer simulation using nanoparticles with diameters between 4 and 17 nm made of an alloy of equal proportions of nickel and titanium.

To date, research efforts to establish structural phase transition temperature have mainly been experimental. Thanks to a computerised method known as molecular dynamics simulation, the authors were able to visualise the transformation process of the material during the transition. As the temperature increased, they showed that the material's atomic-scale crystal structure shifted from a lower to a higher level of symmetry. They found that the strong influence of the energy difference between the low- and high-symmetry structure at the surface of the nanoparticle, which differed from that in its interior, could explain the transition.

Most of the prior work on shape memory materials was in macroscopic scale systems and used for applications such as dental braces, stents or oil temperature-regulating devices for bullet trains. Potential new applications include the creation of nanoswitches, where laser irradiation could heat up such shape memory material, triggering a change in its length that would, in turn, function as a switch.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Mutter, P. Nielaba. Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles. The European Physical Journal B, 2011; DOI: 10.1140/epjb/e2011-20661-4

Cite This Page:

Springer Science+Business Media. "Can metals remember their shape at nanoscale, too?." ScienceDaily. ScienceDaily, 9 November 2011. <www.sciencedaily.com/releases/2011/11/111108104623.htm>.
Springer Science+Business Media. (2011, November 9). Can metals remember their shape at nanoscale, too?. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2011/11/111108104623.htm
Springer Science+Business Media. "Can metals remember their shape at nanoscale, too?." ScienceDaily. www.sciencedaily.com/releases/2011/11/111108104623.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins