Featured Research

from universities, journals, and other organizations

'Noise' tunes logic circuit made from virus genes

Date:
November 9, 2011
Source:
American Institute of Physics
Summary:
In the world of engineering, “noise” – random fluctuations from environmental sources such as heat – is generally a bad thing. In electronic circuits, it is unavoidable, and as circuits get smaller and smaller, noise has a greater and more detrimental effect on a circuit’s performance. Now some scientists are saying: if you can’t beat it, use it.

In the world of engineering, “noise” – random fluctuations from environmental sources such as heat – is generally a bad thing. In electronic circuits, it is unavoidable, and as circuits get smaller and smaller, noise has a greater and more detrimental effect on a circuit’s performance. Now some scientists are saying: if you can’t beat it, use it.

Related Articles


Engineers from Arizona State University in Tempe and the Space and Naval Warfare Systems Center (SPAWAR) in San Diego, Calif., are exploiting noise to control the basic element of a computer – a logic gate that can be switched back and forth between two different logic functions, such as AND\OR – using a genetically engineered system derived from virus DNA. In a paper accepted to the AIP’s journal Chaos, the team has demonstrated, theoretically, that by exploiting sources of external noise, they can make the network switch between different logic functions in a stable and reliable way.

The scientists focused on a single-gene network in a bacteriophage λ (lamda). The gene they use regulates the production of a particular protein in the virus. Normally, there are biological reactions that regulate the creation and destruction of this protein; upsetting that balance results in a protein concentration that is either too high or too low. The scientists assigned a “1” to one concentration and a “0” to the other. By manipulating the protein concentration, the team could encode the logic gate input values and obtain the desired output values.

Researchers modeled the system as two potential energy “wells” separated by a hump, corresponding to an energy barrier. In the presence of too much noise, the system never relaxes into one of the two wells, making the output unpredictable. Too little noise, on the other hand, does not provide the boost necessary for the system to reach a high enough protein concentration to overcome the energy barrier; in this case, there is also a high probability that the biological logic gate will fail to achieve its predicted computation. But an optimal amount of noise stabilizes the circuit, causing the system to jump into the “correct well” – and stay there.

This proof-of-concept work offers the possibility of exploiting noise in biologic circuits instead of regarding it as a laboratory curiosity or a nuisance, the researchers say.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anna Dari, Behnam Kia, Adi R. Bulsara, William L. Ditto. Logical stochastic resonance with correlated internal and external noises in a synthetic biological logic block. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2011; (accepted)

Cite This Page:

American Institute of Physics. "'Noise' tunes logic circuit made from virus genes." ScienceDaily. ScienceDaily, 9 November 2011. <www.sciencedaily.com/releases/2011/11/111108201544.htm>.
American Institute of Physics. (2011, November 9). 'Noise' tunes logic circuit made from virus genes. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/11/111108201544.htm
American Institute of Physics. "'Noise' tunes logic circuit made from virus genes." ScienceDaily. www.sciencedaily.com/releases/2011/11/111108201544.htm (accessed October 25, 2014).

Share This



More Computers & Math News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Microsoft Riding High On Strong Surface, Cloud Performance

Microsoft Riding High On Strong Surface, Cloud Performance

Newsy (Oct. 24, 2014) — Microsoft's Q3 earnings showed its tablets and cloud services are really hitting their stride. Video provided by Newsy
Powered by NewsLook.com
The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins