Featured Research

from universities, journals, and other organizations

Scientists discover how to design drugs that could target particular nerve cells

Date:
November 10, 2011
Source:
University of Bristol
Summary:
The future of drug design lies in developing therapies that can target specific cellular processes without causing adverse reactions in other areas of the nervous system. Scientists have now discovered how to design drugs to target specific areas of the brain.

The future of drug design lies in developing therapies that can target specific cellular processes without causing adverse reactions in other areas of the nervous system. Scientists at the Universities of Bristol and Liθge in Belgium have discovered how to design drugs to target specific areas of the brain.

The research, led by Professor Neil Marrion at Bristol's School of Physiology and Pharmacology and published in this week's Proceedings of National Academy of Sciences (PNAS), will enable the design of more effective drug compounds to enhance nerve activity in specific nerves.

The team has been working on a subtype of ion channel called SK channels. Ion channels are proteins that act as pores in a cell membrane and help control the excitability of nerves.

Rather like an electrical circuit, ion channels work by allowing the flow of 'charged' potassium, sodium and calcium ions to enter or exit cell membranes through a network of pores formed by the channels, a subtype of which is the SK channel family.

The researchers have been using a natural toxin found in bee venom, called apamin, known for its ability to block different types of SK channel. SK channels enable a flow of potassium ions in and out of nerve cells that controls activity. The researchers have taken advantage of apamin being able to block one subtype of SK channel better than the others, to identify how three subtype SK channels [SK1-3] can be selectively blocked.

Neil Marrion, Professor of Neuroscience at the University, said: "The problem with developing drugs to target cellular processes has been that many cell types distributed throughout the body might all have the same ion channels. SK channels are also distributed throughout the brain, but it is becoming obvious that these channels might be made of more than one type of SK channel subunit. It is likely that different nerves have SK channels made from different subunits. This would mean that developing a drug to block a channel made of only one SK channel protein will not be therapeutically useful, but knowing that the channels are composed of multiple SK subunits will be the key."

The study's findings have identified how SK channels are blocked by apamin and other ligands. Importantly, it shows how channels are folded to allow a drug to bind. This will enable drugs to be designed to block those SK channels that are made of more than one type of SK channel subunit, to target the symptoms of dementia and depression more effectively.

Vincent Seutin, one co-author of the paper, said: "Our study also shows a difference in the way apamin and nonpeptidic (potentially a useful drug) ligands interact with the channel. This may have important implications in terms of drug design."

The Belgian Science Policy-funded research is part of a collaborative project between the University of Bristol and the University of Liθge in Belgium.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. L. Weatherall, V. Seutin, J.-F. Liegeois, N. V. Marrion. Crucial role of a shared extracellular loop in apamin sensitivity and maintenance of pore shape of small-conductance calcium-activated potassium (SK) channels. Proceedings of the National Academy of Sciences, 2011; 108 (45): 18494 DOI: 10.1073/pnas.1110724108

Cite This Page:

University of Bristol. "Scientists discover how to design drugs that could target particular nerve cells." ScienceDaily. ScienceDaily, 10 November 2011. <www.sciencedaily.com/releases/2011/11/111110125840.htm>.
University of Bristol. (2011, November 10). Scientists discover how to design drugs that could target particular nerve cells. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2011/11/111110125840.htm
University of Bristol. "Scientists discover how to design drugs that could target particular nerve cells." ScienceDaily. www.sciencedaily.com/releases/2011/11/111110125840.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) — A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) — Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) — California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) — The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins