Featured Research

from universities, journals, and other organizations

New design for mechanical heart valves

Date:
November 23, 2011
Source:
American Physical Society
Summary:
The heart's valves are asymmetrical. Mechanical heart valves, are symmetrical. Could an asymmetric design improve blood flow?

The heart's valves, which guarantee the unidirectional flow of blood from one chamber to another, are asymmetrical. For example, the two flaps of the heart's mitral valve -- which regulates blood flow between the left atrium and the left ventricle -- vary in size by up to 70 percent.

This arrangement, says fluid mechanicist Marija Vukicevic from the University of Trieste (now a researcher at Clemson University), naturally drives blood flow along the lateral wall of the ventricle; from there, blood takes a smooth turn creating a large vortex that redirects the blood toward the aorta (the main blood vessel of the heart), through which it exits out into the body.

Mechanical heart valves, however, are symmetric in design -- with both flaps of a mitral valve replacement of identical size -- and that, Vukicevic and colleagues have found, disrupts the flow of blood.

"Blood flow in the left ventricle is characterized by a physiological vortex that disappears when a symmetric mechanical prosthesis is implanted," she says. With such prostheses, which are implanted into an estimated 60,000 patients each year in the United States, blood flows across the ventricular chamber then hits the opposite side instead of taking a turn, leading to a higher effort in the heart muscle and a disruption in its regulatory mechanism.

To see if a more naturally asymmetric design could improve blood flow, Vukicevic, along with Gianni Pedrizzetti of the University of Trieste and colleagues created aluminum models of asymmetric valves, similar in size to the valves of an adult human heart. The valves were tested in a mock ventricle, made of silicon, through which the researchers could visualize fluid flow. The pattern and rate of flow through the valves, the researchers found, closely matched that of a healthy heart. "We recommend that industries test asymmetric prototypes for mitral valve replacement," she says.

Vukicevic is discussing the findings in a talk at the APS Division of Fluid Dynamics Meeting, which takes place Nov. 20-22, 2011, at the Baltimore Convention Center in the historic waterfront district of Baltimore, Maryland.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "New design for mechanical heart valves." ScienceDaily. ScienceDaily, 23 November 2011. <www.sciencedaily.com/releases/2011/11/111122113212.htm>.
American Physical Society. (2011, November 23). New design for mechanical heart valves. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/11/111122113212.htm
American Physical Society. "New design for mechanical heart valves." ScienceDaily. www.sciencedaily.com/releases/2011/11/111122113212.htm (accessed April 17, 2014).

Share This



More Health & Medicine News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins