Featured Research

from universities, journals, and other organizations

Cancer cells' DNA repair disrupted to increase radiation sensitivity

Date:
December 1, 2011
Source:
Cincinnati Children's Hospital Medical Center
Summary:
Shortening end caps on chromosomes in human cervical cancer cells disrupts DNA repair signaling, increases the cells' sensitivity to radiation treatment and kills them more quickly, according to a new study. Researchers would to like see their laboratory findings lead to safer, more effective combination therapies for hard-to-treat pediatric brain cancers. To this end, they are starting laboratory tests on brain cancer cells.

Shortening end caps on chromosomes in human cervical cancer cells disrupts DNA repair signaling, increases the cells' sensitivity to radiation treatment and kills them more quickly, according to a study in Cancer Prevention Research.

Researchers would to like see their laboratory findings -- published in the journal's Dec. 5 print edition -- lead to safer, more effective combination therapies for hard-to-treat pediatric brain cancers like medulloblastoma and high-grade gliomas. To this end, they are starting laboratory tests on brain cancer cells.

"Children with pediatric brain cancers don't have very many options because progress to find new treatments has been limited the last 30 years," said Rachid Drissi, PhD, principal investigator on the study and a researcher in the Division of Oncology at Cincinnati Children's. "The ability to make cancer cells more sensitive to radiation could allow physicians to use lower radiation doses to lessen side effects. Too many children with brain cancer can develop disabilities or die from treatment."

Before treating cells with ionizing radiation, the researchers blocked an enzyme called telomerase, found in over 90 percent of cancer cells but barely detectable in most normal human cells. In cancer cells, telomerase helps maintain the length of caps on the ends of chromosomes called telomeres. This helps cancer cells replicate indefinitely, grow and spread, Drissi said.

Unraveling DNA stability

Found on chromosomes in both cancerous and normal cells, telomeres are analogous to plastic caps that keep shoestring ends from unraveling. Telomeres help preserve DNA stability in cells by containing genetic miscues. This helps explain why cells with maintained or long telomeres appear to be more resistant to radiation.

In normal cells lacking the telomerase enzyme, telomeres get shorter each time cells divide. They continue doing so until normal cells stop dividing, reaching a condition called senescence. If this first cell-cycle "stop sign" is bypassed, cells continue dividing until telomeres become critically short and reach a second stopping point, when most cells die. In rare instances, cells bypass this second "stop sign" and survive. This survival is often associated with telomerase activation and the onset of cancer.

This was the basis for experiments Drissi and his colleagues conducted to compare the radiation sensitivity and survivability of cells based on telomere length. They also monitored DNA repair responses in the cells by looking for specific biochemical signs that indicate whether the repair systems are working.

The tests involved normal human foreskin cells -- called fibroblasts -- and human cervical carcinoma cells. They exposed the cells to ionizing radiation and analyzed DNA repair responses as telomeres became progressively shorter. In the cervical cancer cells, researchers blocked the telomerase enzyme before radiation treatment to induce progressively shorter telomeres.

Both late-stage noncancerous cells with shorter telomeres, and cancer cells with induced shorter telomeres, were more radiosensitive and died more quickly, according to the study.

Among cancer cells with maintained telomere length, close to 10 percent receiving the maximum dose of ionizing radiation used in the study (8 Gy, or Gray Units) survived the treatment. None of the cancer cells with the shortest telomeres survived that exposure.

Researchers said the cancer cells became more radiosensitive because material inside the chromosomes -- called chromatin -- compacted as telomeres became shorter. Compacted chromatin then disrupted the biochemical signaling of a protein called ATM (ataxiatelangeietasia mutated).

ATM is a master regulator of DNA repair and cell division. It sends signals to activate other biochemical targets (H2AX, SMC1, NBS1 and p53) that help direct DNA repair and preserve genetic stability. In telomere-shortened cancer cells, the compacted chromatin inhibited ATM signaling to all of the chromatin-bound targets tested in the study. This disrupted DNA repair responses and increased radiation sensitivity.

Testing brain cancer cells

The researchers are now testing their findings in cells from hard-to-treat pediatric brain tumors. These tests begin as Drissi's laboratory also leads correlative cancer biology studies of tumor samples from a current clinical trial. The trial is evaluating telomere shortening as a stand-alone therapy for pediatric cancer.

Managed through the National Institutes of Health's Children's Oncology Group (COG), the multi-institutional Phase 1 trial is testing the safety and tumor response capabilities of the drug Imetelstat, which blocks telomerase in cancer cells. Drissi serves on the clinical trial committee along with Maryam Fouladi, MD, MSc, and medical director of Neuro-Oncology at Cincinnati Children's. She leads the medical center's clinical participation in the trial.

Drissi and Fouladi are starting preparatory work to develop, and seek approvals for, a possible clinical trial to test telomere shortening and radiation treatment as a safer, more effective treatment for pediatric brain tumors.

Funding support for the current study in Cancer Prevention Research -- published by the American Society for Cancer Research -- came from the National Institutes of Health, the American Lebanese Syrian Associated Charities of St. Jude Children's Research Hospital and Cincinnati Children's Hospital Medical Center. Also collaborating were researchers from Children's National Medical Center in Washington, D.C., and from St. Jude. Funding support for the Drissi lab's correlative studies on the COG clinical trial comes from CancerFree Kids Pediatric Cancer Research Alliance and from Children's Cancer Research Fund.


Story Source:

The above story is based on materials provided by Cincinnati Children's Hospital Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. Drissi, J. Wu, Y. Hu, C. A. Bockhold, J. S. Dome. Telomere shortening alters the kinetics of the DNA damage response after ionizing radiation in human cells. Cancer Prevention Research, 2011; DOI: 10.1158/1940-6207.CAPR-11-0069

Cite This Page:

Cincinnati Children's Hospital Medical Center. "Cancer cells' DNA repair disrupted to increase radiation sensitivity." ScienceDaily. ScienceDaily, 1 December 2011. <www.sciencedaily.com/releases/2011/12/111201105441.htm>.
Cincinnati Children's Hospital Medical Center. (2011, December 1). Cancer cells' DNA repair disrupted to increase radiation sensitivity. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2011/12/111201105441.htm
Cincinnati Children's Hospital Medical Center. "Cancer cells' DNA repair disrupted to increase radiation sensitivity." ScienceDaily. www.sciencedaily.com/releases/2011/12/111201105441.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
Tooth Plaque Provides Insight Into Diets Of Ancient People

Tooth Plaque Provides Insight Into Diets Of Ancient People

Newsy (July 19, 2014) Research on plaque from ancient teeth shows that our prehistoric ancestor's had a detailed understanding of plants long before developing agriculture. Video provided by Newsy
Powered by NewsLook.com
Contaminated Water Kills 3 Babies in South African Town

Contaminated Water Kills 3 Babies in South African Town

AFP (July 18, 2014) Contaminated water in South Africa's northwestern town of Bloemhof kills three babies and hospitalises over 500 people. The incident highlights growing fears over water safety in South Africa. Duration: 02:22 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins