Featured Research

from universities, journals, and other organizations

New switch could improve electronics

Date:
December 2, 2011
Source:
University of Pittsburgh
Summary:
Researchers have invented a new type of electronic switch that performs electronic logic functions within a single molecule. The incorporation of such single-molecule elements could enable smaller, faster, and more energy-efficient electronics.

The switch was discovered by experimenting with the rotation of a triangular cluster of three metal atoms held together by a nitrogen atom, which is enclosed entirely within a cage made up entirely of carbon atoms.
Credit: Image courtesy of University of Pittsburgh

Researchers at the University of Pittsburgh have invented a new type of electronic switch that performs electronic logic functions within a single molecule. The incorporation of such single-molecule elements could enable smaller, faster, and more energy-efficient electronics.

The research findings, supported by a $1 million grant from the W.M. Keck Foundation, were published online in the Nov. 14 issue of Nano Letters.

"This new switch is superior to existing single-molecule concepts," said Hrvoje Petek, principal investigator and professor of physics and chemistry in the Kenneth P. Dietrich School of Arts and Sciences and codirector of the Petersen Institute for NanoScience and Engineering (PINSE) at Pitt. "We are learning how to reduce electronic circuit elements to single molecules for a new generation of enhanced and more sustainable technologies."

The switch was discovered by experimenting with the rotation of a triangular cluster of three metal atoms held together by a nitrogen atom, which is enclosed entirely within a cage made up entirely of carbon atoms. Petek and his team found that the metal clusters encapsulated within a hollow carbon cage could rotate between several structures under the stimulation of electrons. This rotation changes the molecule's ability to conduct an electric current, thereby switching among multiple logic states without changing the spherical shape of the carbon cage. Petek says this concept also protects the molecule so it can function without influence from outside chemicals.

Because of their constant spherical shape, the prototype molecular switches can be integrated as atom-like building blocks the size of one nanometer (100,000 times smaller than the diameter of a human hair) into massively parallel computing architectures.

The prototype was demonstrated using an Sc3N@C80 molecule sandwiched between two electrodes consisting of an atomically flat copper oxide substrate and an atomically sharp tungsten tip. By applying a voltage pulse, the equilateral triangle-shaped Sc3N could be rotated predictably among six logic states.

The research was led by Petek in collaboration with chemists at the Leibnitz Institute for Solid State Research in Dresden, Germany, and theoreticians at the University of Science and Technology of China in Hefei, People's Republic of China. The experiments were performed by postdoctoral researcher Tian Huang and research assistant professor Min Feng, both in Pitt's Department of Physics and Astronomy.


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tian Huang, Jin Zhao, Min Feng, Alexey A. Popov, Shangfeng Yang, Lothar Dunsch, Hrvoje Petek. A Molecular Switch Based on Current-Driven Rotation of an Encapsulated Cluster within a Fullerene Cage. Nano Letters, 2011; 111123145903006 DOI: 10.1021/nl2028409

Cite This Page:

University of Pittsburgh. "New switch could improve electronics." ScienceDaily. ScienceDaily, 2 December 2011. <www.sciencedaily.com/releases/2011/12/111201125402.htm>.
University of Pittsburgh. (2011, December 2). New switch could improve electronics. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2011/12/111201125402.htm
University of Pittsburgh. "New switch could improve electronics." ScienceDaily. www.sciencedaily.com/releases/2011/12/111201125402.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins