Featured Research

from universities, journals, and other organizations

Scientists discover how brain corrects bumps to body

Date:
December 6, 2011
Source:
Queen's University
Summary:
Researchers have identified the area of the brain that controls our ability to correct our movement after we've been hit or bumped -- a finding that may have implications for understanding why subjects with stroke often have severe difficulties moving.

Researchers have identified the area of the brain that controls our ability to correct our movement after we've been hit or bumped -- a finding that may have implications for understanding why subjects with stroke often have severe difficulties moving.

The fact that humans rapidly correct for any disturbance in motion demonstrates the brain understands the physics of the limb -- scientists just didn't know what part of the brain supported this feedback response -- until now.

Several pathways and regions of the central nervous system could contribute to our response to external knocks to the body, but researchers only recently discovered that the pathway through the primary motor cortex provides this knowledge of the physics of the limb.

"To say this process is complex is an understatement," says Stephen Scott, a neuroscience professor and motor behavior specialist in the Department of Biomedical and Molecular Sciences. "Voluntary movement is really, really hard in terms of the math involved. When I walk around, the equations of my motion are like a small book. The best physicists can't solve these complicated equations, but your brain can do it incredibly quickly."

The corrective movement pathway works by limiting and correcting the domino effect of involuntary bodily movement caused by an external blow. For example, a blow to the shoulder that causes the whole arm to swing about may require the brain to quickly turn on muscles in the shoulder, bicep, forearm and hand in order to regain control of the limb. Likewise, a football player who collides with an opponent during a game has to respond quickly to correct the movement and remain upright.

Strokes that take place in the primary motor cortex may cause varying levels of damage to this corrective movement pathway. This varying damage may explain why some stroke patients are able to improve their movement skills in rehabilitation and why some patients remain uncoordinated and unsteady.

Dr. Scott now wants to apply these findings to stroke patients by examining the damage these patients have to their sensory pathways and how this damage relates to movement problems. He believes that these findings may support an increased focus on first-stage sensory rehabilitation to help rebuild pathways that transmit sensory information to the brain before treatment moves to a focus on motor skills.

Other Queen's researchers involved with this study are J. Andrew Pruszynski, Isaac Kurtzer, Joseph Nashed, Mohsen Omrani (Centre for Neuroscience Studies), and Brenda Brouwer (Centre for Neuroscience Studies and Department of Biomedical and Molecular Sciences).

This work was recently published in Nature, and was funded by the Canadian Institutes of Health Research (CIHR) and the Natural Science and Engineering Research Council of Canada (NSERC).


Story Source:

The above story is based on materials provided by Queen's University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Andrew Pruszynski, Isaac Kurtzer, Joseph Y. Nashed, Mohsen Omrani, Brenda Brouwer, Stephen H. Scott. Primary motor cortex underlies multi-joint integration for fast feedback control. Nature, 2011; 478 (7369): 387 DOI: 10.1038/nature10436

Cite This Page:

Queen's University. "Scientists discover how brain corrects bumps to body." ScienceDaily. ScienceDaily, 6 December 2011. <www.sciencedaily.com/releases/2011/12/111205140527.htm>.
Queen's University. (2011, December 6). Scientists discover how brain corrects bumps to body. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/12/111205140527.htm
Queen's University. "Scientists discover how brain corrects bumps to body." ScienceDaily. www.sciencedaily.com/releases/2011/12/111205140527.htm (accessed July 28, 2014).

Share This




More Mind & Brain News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins