Featured Research

from universities, journals, and other organizations

Meteorite shockwaves trigger dust avalanches on Mars

Date:
December 17, 2011
Source:
University of Arizona
Summary:
Dust avalanches around impact craters on Mars appear to be the result of the shock wave preceding the actual impact, according to a new study. Small impacts might therefore be more important in shaping the Martian surface than previously thought.

HiRISE image of the study area showing the central crater with two dagger-like features extending at an angle (red and blue arrows). Called scimitars, these features most likely resulted from shockwave interference just before impact.
Credit: NASA/JPL-Caltech/The University of Arizona

Dust avalanches around impact craters on Mars appear to be the result of the shock wave preceding the actual impact, according to a study led by an undergraduate student at the University of Arizona.

When a meteorite careens toward the dusty surface of the Red Planet, it kicks up dust and can cause avalanching even before the rock from outer space hits the ground, a research team led by an undergraduate student at the University of Arizona has discovered.

"We expected that some of the streaks of dust that we see on slopes are caused by seismic shaking during impact," said Kaylan Burleigh, who led the research project. "We were surprised to find that it rather looks like shockwaves in the air trigger the avalanches even before the impact."

Because of Mars' thin atmosphere, which is 100 times less dense than Earth's, even small rocks that would burn up or break up before they could hit the ground here on Earth crash into the Martian surface relatively unimpeded.

Each year, about 20 fresh craters between 1 and 50 meters (3 to 165 feet) show up in images taken by the HiRISE camera on board NASA's Mars Reconnaissance Orbiter. The High Resolution Imaging Science Experiment, or HiRISE, is operated by the UA's Lunar and Planetary Laboratory and has been photographing the Martian surface since 2006, revealing features down to less than 1 meter in size.

For this study, the team zoomed in on a cluster of five large craters, which all formed in one impact event close to Mars' equator, about 825 kilometers (512 miles) south of the boundary scarp of Olympus Mons, the tallest mountain in the solar system. Previous observations by the Mars Global Surveyor orbiter, which imaged Mars for nine years until 2006, showed that this cluster was blasted into the dusty surface between May 2004 and February 2006.

The results of the research, which Burleigh first took on as a freshman under former UA Regents Professor H. Jay Melosh, are published in the planetary science journal Icarus. Previous studies had looked at dark or light streaks on the Martian landscape interpreted as landslides, but none had tied such a large number of them to impacts.

The authors interpret the thousands of downhill-trending dark streaks on the flanks of ridges covering the area as dust avalanches caused by the impact. The largest crater in the cluster measures 22 meters, or 72 feet across and occupies roughly the area of a basketball court. Most likely, the cluster of craters formed as the meteorite broke up in the atmosphere, and the fragments hit the ground like a shotgun blast.

Narrow, relatively dark streaks varying from a few meters to about 50 meters in length scour the slopes around the impact site.

"The dark streaks represent the material exposed by the avalanches, as induced by the the airblast from the impact," Burleigh said. "I counted more than 100,000 avalanches and, after repeated counts and deleting duplicates, arrived at 64,948."

When Burleigh looked at the distribution of avalanches around the impact site, he realized their number decreased with distance in every direction, consistent with the idea that they were related to the impact event.

But it wasn't until he noticed a pair of peculiar surface features resembling a curved dagger, described as scimitars, extending from the central impact crater, that the way in which the impact caused the avalanches became evident.

"Those scimitars tipped us off that something other than seismic shaking must be causing the dust avalanches," Burleigh said.

As a meteor screams through the atmosphere at several times the speed of sound, it creates shockwaves in the air. Simulating the shockwaves generated by impacts on Martian soil with computer models, the team observed the exact pattern of scimitars they saw on their impact site.

"We think the interference among different pressure waves lifts up the dust and sets avalanches in motion. These interference regions, and the avalanches, occur in a reproducible pattern," Burleigh said. "We checked other impact sites and realized that when we see avalanches, we usually see two scimitars, not just one, and they both tend to be at a certain angle to each other. This pattern would be difficult to explain by seismic shaking."

In the absence of plate tectonic processes and water-caused erosion, the authors conclude that small impacts might be more important in shaping the Martian surface than previously thought.

"This is one part of a larger story about current surface activity on Mars, which we are realizing is very different than previously believed," said Alfred McEwen, principal investigator of the HiRISE project and one of the co-authors of the study. "We must understand how Mars works today before we can correctly interpret what may have happened when the climate was different, and before we can draw comparisons to Earth."


Story Source:

The above story is based on materials provided by University of Arizona. The original article was written by Daniel Stolte, University Communications. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kaylan J. Burleigh, Henry J. Melosh, Livio L. Tornabene, Boris Ivanov, Alfred S. McEwen, Ingrid J. Daubar. Impact airblast triggers dust avalanches on Mars. Icarus, 2012; 217 (1): 194 DOI: 10.1016/j.icarus.2011.10.026

Cite This Page:

University of Arizona. "Meteorite shockwaves trigger dust avalanches on Mars." ScienceDaily. ScienceDaily, 17 December 2011. <www.sciencedaily.com/releases/2011/12/111216115022.htm>.
University of Arizona. (2011, December 17). Meteorite shockwaves trigger dust avalanches on Mars. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/12/111216115022.htm
University of Arizona. "Meteorite shockwaves trigger dust avalanches on Mars." ScienceDaily. www.sciencedaily.com/releases/2011/12/111216115022.htm (accessed July 31, 2014).

Share This




More Space & Time News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Supply Ship Takes Off for International Space Station

Supply Ship Takes Off for International Space Station

AFP (July 30, 2014) The European Space Agency's fifth Automated Transfer Vehicle (ATV-5) is takes off to the International Space Station on an Ariane 5 rocket from French Guiana. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com
Raw: Rocket Launches Into Space With Cargo Ship

Raw: Rocket Launches Into Space With Cargo Ship

AP (July 30, 2014) Arianespace launched a rocket Tuesday from French Guiana carrying a robotic cargo ship to deliver provisions to the International Space Station. (July 30) Video provided by AP
Powered by NewsLook.com
In Virginia, the Rise of a New Space Coast

In Virginia, the Rise of a New Space Coast

AP (July 30, 2014) Every summer, tourists make the pilgrimage to Chincoteague Island, Va. to see wild ponies cross the Assateague Channel. But, it's the rockets sending to supplies to the International Space Station that are making this a year-round destination. (July 30) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins