Featured Research

from universities, journals, and other organizations

Tissue structure delays cancer development

Date:
December 19, 2011
Source:
Max-Planck-Gesellschaft
Summary:
Cancer growth normally follows a lengthy period of development. Over the course of time, genetic mutations often accumulate in cells, leading first to pre-cancerous conditions and ultimately to tumor growth. Using a mathematical model, scientists have now shown that spatial tissue structure, such as that found in the colon, slows down the accumulation of genetic mutations, thereby delaying the onset of cancer.

Cancer growth normally follows a lengthy period of development. Over the course of time, genetic mutations often accumulate in cells, leading first to pre-cancerous conditions and ultimately to tumour growth. Using a mathematical model, scientists at the Max Planck Institute for Dynamics and Self-Organization in Gφttingen, University of Pennsylvania and University of California San Francisco, have now shown that spatial tissue structure, such as that found in the colon, slows down the accumulation of genetic mutations, thereby delaying the onset of cancer. Their model could help in the assessment of tissue biopsies and improve predictions of the progression of certain cancer types.

Related Articles


Many types of cancer develop unnoticed in the body over a long number of years before the disease erupts. The point of departure is provided by specific genetic mutations including point mutations, copy number alterations, loss of heterozygosity, and other structural rearrangements, that gradually accumulate in the cells, leading to the formation of pre-cancerous lesions. If a certain number of mutations is reached in individual cells, the cells begin to proliferate unchecked. For some cancer types, the accumulation process can take up to 20 years. However, not everyone with pre-cancerous tissue will actually develop cancer; the formation of abnormal cells often has no medical consequences. To date, it is still unclear why tumours develop in some cases and not in others.

Using mathematical modelling, a research group headed by Erik Martens and Oskar Hallatschek of the Max Planck Institute for Dynamics and Self-Organization in Gφttingen have studied how genetic mutations spread, the speed of the mutation accumulation process, and the impact of this process on the progression of pre-cancerous conditions. They have shown that the destiny of oncogenic or cancer-causing mutations depends in part on where they occur and how much competition they are exposed to from other, similar mutations. In an environment without any spatial structure, for example in the blood, genetic mutations can propagate and accumulate relatively fast. In tissue with clear spatial structure, such as that of the colon, however, it takes longer for cells to accumulate the number of mutations required for tumour formation.

The study was based on a theoretical model of evolution developed by the two Max Planck scientists. Many genetic mutations are detrimental to the mutated cells and therefore do not prosper. On the other hand, certain genetic alterations give their hosts a competitive advantage over other cells. This includes, for example, mutations that increase the rate of cell division. "That direct advantage enables cells with this type of mutation to proliferate and accumulate in the tissue; but in such cases, what is advantageous to the cell is harmful to the patient, as it may ultimately cause cancer," explains Erik Martens.

The model used in this research was based on tissue like that of the intestinal wall, which contains many pockets or crypts, each containing isolated groups of cells that may accumulate and carry different mutations. If mutations arise only rarely, they may spread unhindered through the pre-cancerous tissue. However, if other mutations occur before the first one has spread throughout the tissue, the diverse mutation clones meet and compete with one another for survival. In such cases, there are many losers and few winners, and only certain mutations are successful in establishing themselves.

In principle, advantageous mutations cannot proliferate as quickly in spatially structured cell populations as in fully mixed or structureless populations. Consequently, the competition between mutations in spatially structured tissue is often very strong, and the mutation accumulation rate is lower than in non-structured populations. According to the study, this is why structured populations take longer to reach a critical number of mutations, thereby delaying the onset of cancer.

"Even though many types of cancer arise in body tissues with clear spatial structures, most earlier models of cancer progression neglected this aspect and were based on well-mixed cell populations," explains Erik Martens. "However, it is important to integrate the structural aspect in order to better predict how pre-cancerous conditions progress. For instance, tissue with spatial structure accumulates fewer mutations over a given period than tissue with unstructured cells. It could therefore be that the number of mutations required to trigger certain types of cancer has been overestimated." The researchers hope that their findings will help improve the interpretation of tissue biopsies and contribute to more realistic predictions of cancer progression.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. A. Martens, O. Hallatschek. Interfering Waves of Adaptation Promote Spatial Mixing. Genetics, 2011; 189 (3): 1045 DOI: 10.1534/genetics.111.130112

Cite This Page:

Max-Planck-Gesellschaft. "Tissue structure delays cancer development." ScienceDaily. ScienceDaily, 19 December 2011. <www.sciencedaily.com/releases/2011/12/111219101858.htm>.
Max-Planck-Gesellschaft. (2011, December 19). Tissue structure delays cancer development. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2011/12/111219101858.htm
Max-Planck-Gesellschaft. "Tissue structure delays cancer development." ScienceDaily. www.sciencedaily.com/releases/2011/12/111219101858.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins