Featured Research

from universities, journals, and other organizations

Balancing the womb: New research may explain premature births

Date:
December 23, 2011
Source:
University of Bristol
Summary:
New research may explain premature births and failed inductions of labor. The study suggests a new mechanism by which the level of myosin phosphorylation is regulated in the pregnant uterus.

New research may explain premature births and failed inductions of labor. The study by academics at the University of Bristol suggests a new mechanism by which the level of myosin phosphorylation is regulated in the pregnant uterus.

Related Articles


The researchers, Dr Claire Hudson and Professor Andr้s L๓pez Bernal in the School of Clinical Sciences and Dr Kate Heesom in the University Proteomics Facility and the School of Biochemistry, have discovered that phosphorylation of uterus proteins at specific amino acids have a key role in the regulation of uterine activity in labour.

A remarkable feature of the uterus (the womb) is that it remains relatively relaxed for the nine months of pregnancy, carrying the baby safely, and then, during labour, it contracts forcibly and the baby is born. A special type of smooth muscle that grows and stretches during pregnancy to accommodate the fetus and the placenta forms the uterus.

Hormones such as oxytocin or prostaglandins promote labour, but the biochemical changes that allow the switch from relaxation to contractions to happen are not fully understood. This makes it difficult to predict when a woman is going to deliver. In eight to ten per cent of women delivery occurs too early (preterm labour, before 37 weeks' gestation) and prematurity is associated with major risks for the baby. On the other hand when labour has to be induced for medical reasons, it is impossible to know whether the induction will be successful or whether it will require an emergency caesarean section with risks for the mother and baby.

Using small biopsies of uterine tissue from women who delivered at St Michael's Hospital, Dr Hudson has demonstrated that contractions require both a calcium dependent pathway driven by myosin kinase and a calcium independent pathway that regulates the activity of myosin phosphatase. Additionally, Dr Hudson has pinpointed precisely the position of the amino acids in myosin and myosin phosphatase that are phosphorylated during cycles of contraction and relaxation of uterine smooth muscle.

Dr Claire Hudson said: "This study has increased our understanding of the biochemical changes underlying uterine activity and may help in the design of better drugs to prevent preterm labour or to induce labour successfully at term, benefiting many thousands of women and their babies."

Andr้s L๓pez Bernal, Professor of Human Reproductive Biology, added: "Our research will lead to better control of labour, whether stopping or starting it and it could be extended to the study of the non-pregnant uterus to improve our understanding of menstruation and to identify alterations responsible for painful periods or excessive menstrual blood loss."

A key aspect of smooth muscle contractions is the phosphorylation (addition of phosphate) to certain muscle proteins called myosins, and is usually stimulated by increasing the level of calcium inside the cells. The balance of myosin phosphorylation and de-phosphorylation (removal of phosphate) is finely regulated by myosin kinases and myosin phosphatases, respectively, and in pregnancy this equilibrium determines whether the uterus is relaxed or contracting.

Alterations in the kinase/phosphatase equilibrium and its regulation by calcium can make the uterus more sensitive to oxytocin and other hormones that trigger labour and provoke preterm birth. On the other hand, alterations that favour relaxation may make the uterus contract poorly and result in failed induction of labour.

The work was funded by a grant from the Wellcome Trust.


Story Source:

The above story is based on materials provided by University of Bristol. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. A. Hudson, K. J. Heesom, A. L. Bernal. Phasic contractions-relaxations of isolated human myometrium are associated with Rho-kinase (ROCK)-dependent phosphorylation of myosin phosphatase targeting subunit (MYPT1). Molecular Human Reproduction, 2011; DOI: 10.1093/molehr/gar078

Cite This Page:

University of Bristol. "Balancing the womb: New research may explain premature births." ScienceDaily. ScienceDaily, 23 December 2011. <www.sciencedaily.com/releases/2011/12/111221105724.htm>.
University of Bristol. (2011, December 23). Balancing the womb: New research may explain premature births. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/12/111221105724.htm
University of Bristol. "Balancing the womb: New research may explain premature births." ScienceDaily. www.sciencedaily.com/releases/2011/12/111221105724.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) — It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) — More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) — In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) — The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins