Featured Research

from universities, journals, and other organizations

Noise-free spectroscopy: Reversing the problem clarifies molecular structure

Date:
January 28, 2012
Source:
University of Twente
Summary:
Optical techniques enable us to examine single molecules, but do we really understand what we are seeing? After all, the fuzziness caused by effects such as light interference makes these images very difficult to interpret. Researchers have now adopted a "reverse" approach to spectroscopy which cleaned up images by eliminating background noise.

Optical techniques enable us to examine single molecules, but do we really understand what we are seeing? After all, the fuzziness caused by effects such as light interference makes these images very difficult to interpret. Researchers at the University of Twente's MESA+ Institute for Nanotechnology adopted a "reverse" approach to spectroscopy which cleaned up images by eliminating background noise.

Related Articles


The researchers presented their findings in Physical Review Letters.

Rather than starting with the laser beam, the trick is to take the molecule you are studying as the starting point. This radical "reversal" led to a relatively simple modification of conventional CARS spectroscopy, which delivered better images. CARS was already a powerful technique which used lasers to visualize molecules for such purposes as food testing and medical imaging. One advantage is that no fluorescent labels are needed to make the molecules visible. However, background noise complicates the task of interpreting the resultant images. This new approach eliminates such noise completely, leaving only the "real" image. More information than ever before, such as accurate details of the substance's concentration, can be obtained using this technique. It is easier to detect the signature of the molecule in question.

Energy

The key to side-stepping the overwhelming complexity involved lay in Prof. Shaul Mukamel's exhortation to just "Look at the molecule!" (the professor, who holds a post at the University of California, collaborated on the present publication). So don't focus on the way that light interacts with the molecule, as this makes it very difficult -- even impossible -- to "separate the wheat from the chaff" and reveal the real image. Instead, start by examining the energy levels inside the molecule. Previous work, based on Prof. Mukamel's exhortation, has mainly led to the development of new theories. The University of Twente researchers have now translated this theory into the new technique of Vibrational Molecular Interferometry, which will vastly expand the uses of CARS and other techniques.

This study was conducted in Prof. Jennifer Herek's Optical Sciences group. The research group is part of the MESA+ Institute for Nanotechnology of the University of Twente. The study was funded in part by the Foundation for Fundamental Research on Matter (FOM), and partly from the VICI grant previously awarded to Jennifer Herek by the Netherlands Organisation for Scientific Research (NWO).

The publication, entitled "Background-free nonlinear microspectroscopy with vibrational molecular interferometry," by Erik Garbacik, Jeroen Korterik, Cees Otto, Shaul Mukamel, Jennifer Herek and Herman Offerhaus, was published on 16 December, in the online edition of Physical Review Letters.


Story Source:

The above story is based on materials provided by University of Twente. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erik Garbacik, Jeroen Korterik, Cees Otto, Shaul Mukamel, Jennifer Herek, Herman Offerhaus. Background-Free Nonlinear Microspectroscopy with Vibrational Molecular Interferometry. Physical Review Letters, 2011; 107 (25) DOI: 10.1103/PhysRevLett.107.253902

Cite This Page:

University of Twente. "Noise-free spectroscopy: Reversing the problem clarifies molecular structure." ScienceDaily. ScienceDaily, 28 January 2012. <www.sciencedaily.com/releases/2011/12/111223091329.htm>.
University of Twente. (2012, January 28). Noise-free spectroscopy: Reversing the problem clarifies molecular structure. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2011/12/111223091329.htm
University of Twente. "Noise-free spectroscopy: Reversing the problem clarifies molecular structure." ScienceDaily. www.sciencedaily.com/releases/2011/12/111223091329.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins