Featured Research

from universities, journals, and other organizations

Transparency limits on transparent conducting oxides identified

Date:
January 19, 2012
Source:
University of California - Santa Barbara
Summary:
Computational materials researchers have used cutting-edge calculations to determine fundamental optical transparency limits in conducting oxide material tin oxide.

Three beams of light (red for infrared, yellow for visible light, and violet for ultraviolet) travel through a layer of SnO2. Absorption by the conduction electrons in the oxide reduces the intensity of the beams.
Credit: Hartwin Peelaers, UCSB

Researchers in the Computational Materials Group at the University of California, Santa Barbara (UCSB) have uncovered the fundamental limits on optical transparency in the class of materials known as transparent conducting oxides. Their discovery will support development of energy efficiency improvements for devices that depend on optoelectronic technology, such as light- emitting diodes and solar cells.

Transparent conducting oxides are used as transparent contacts in a wide range of optoelectronic devices, such as photovoltaic cells, light-emitting diodes (LEDs), and LCD touch screens. These materials are unique in that they can conduct electricity while being transparent to visible light. For optoelectronic devices to be able to emit or absorb light, it is important that the electrical contacts at the top of the device are optically transparent. Opaque metals and most transparent materials lack the balance between these two characteristics to be functional for use in such technology.

In a paper published in Applied Physics Letters, the UCSB researchers used cutting-edge calculation methods to investigate tin dioxide (SnO2), a widely-used conducting oxide.

Conducting oxides strike an ideal balance between transparency and conductivity because their wide band gaps prevent absorption of visible light by excitation of electrons across the gap, according to the researchers. At the same time, dopant atoms provide additional electrons in the conduction band that enable electrical conductivity. However, these free electrons can also absorb light by being excited to higher conduction-band states.

"Direct absorption of visible light cannot occur in these materials because the next available electron level is too high in energy. But we found that more complex absorption mechanisms, which also involve lattice vibrations, can be remarkably strong," says Hartwin Peelaers, a postdoctoral researcher and the lead author of the paper. The other authors are Emmanouil Kioupakis, now at the University of Michigan, and Chris Van de Walle, a professor in the UCSB Materials Department and head of the research group.

They found that tin dioxide only weakly absorbs visible light, thus letting most light pass through, so that it is still a useful transparent contact. In their study, the transparency of SnO2 declined when moving to other wavelength regions. Absorption was 5 times stronger for ultraviolet light and 20 times stronger for the infrared light used in telecommunications.

"Every bit of light that gets absorbed reduces the efficiency of a solar cell or LED," remarked Chris Van de Walle. "Understanding what causes the absorption is essential for engineering improved materials to be used in more efficient devices."


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. H. Peelaers, E. Kioupakis, C. G. Van de Walle. Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2. Applied Physics Letters, 2012; 100 (1): 011914 DOI: 10.1063/1.3671162

Cite This Page:

University of California - Santa Barbara. "Transparency limits on transparent conducting oxides identified." ScienceDaily. ScienceDaily, 19 January 2012. <www.sciencedaily.com/releases/2012/01/120118101532.htm>.
University of California - Santa Barbara. (2012, January 19). Transparency limits on transparent conducting oxides identified. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2012/01/120118101532.htm
University of California - Santa Barbara. "Transparency limits on transparent conducting oxides identified." ScienceDaily. www.sciencedaily.com/releases/2012/01/120118101532.htm (accessed September 23, 2014).

Share This



More Matter & Energy News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will Living Glue Be A Thing?

Will Living Glue Be A Thing?

Newsy (Sep. 23, 2014) Using proteins derived from mussels, engineers at MIT have made a supersticky underwater adhesive. They're now looking to make "living glue." Video provided by Newsy
Powered by NewsLook.com
Company Copies Keys From Photos

Company Copies Keys From Photos

Newsy (Sep. 22, 2014) A new company allows customers to make copies of keys by simply uploading a couple of photos. But could it also be great for thieves? Video provided by Newsy
Powered by NewsLook.com
The Hyped-Up Big Bang Discovery Has A Dust Problem

The Hyped-Up Big Bang Discovery Has A Dust Problem

Newsy (Sep. 22, 2014) An analysis of new satellite data casts serious doubt on a previous study about the Big Bang that was once hailed as revolutionary. Video provided by Newsy
Powered by NewsLook.com
Rockefeller Oil Heirs Switching To Clean Energy

Rockefeller Oil Heirs Switching To Clean Energy

Newsy (Sep. 22, 2014) The Rockefellers — heirs to an oil fortune that made the family name a symbol of American wealth — are switching from fossil fuels to clean energy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins