Featured Research

from universities, journals, and other organizations

Faster-than-fast Fourier transform

Date:
January 18, 2012
Source:
Massachusetts Institute of Technology
Summary:
Researchers have developed a new algorithm that, in a large range of practically important cases, improves on the fast Fourier transform. Under some circumstances, the improvement can be dramatic -- a tenfold increase in speed. The new algorithm could be particularly useful for image compression, enabling, say, smartphones to wirelessly transmit large video files without draining their batteries or consuming their monthly bandwidth allotments.

The Fourier transform is one of the most fundamental concepts in the information sciences. It's a method for representing an irregular signal -- such as the voltage fluctuations in the wire that connects an MP3 player to a loudspeaker -- as a combination of pure frequencies. It's universal in signal processing, but it can also be used to compress image and audio files, solve differential equations and price stock options, among other things.

Related Articles


The reason the Fourier transform is so prevalent is an algorithm called the fast Fourier transform (FFT), devised in the mid-1960s, which made it practical to calculate Fourier transforms on the fly. Ever since the FFT was proposed, however, people have wondered whether an even faster algorithm could be found.

At the Association for Computing Machinery's Symposium on Discrete Algorithms (SODA) this week, a group of MIT researchers will present a new algorithm that, in a large range of practically important cases, improves on the fast Fourier transform. Under some circumstances, the improvement can be dramatic -- a tenfold increase in speed. The new algorithm could be particularly useful for image compression, enabling, say, smartphones to wirelessly transmit large video files without draining their batteries or consuming their monthly bandwidth allotments.

Like the FFT, the new algorithm works on digital signals. A digital signal is just a series of numbers -- discrete samples of an analog signal, such as the sound of a musical instrument. The FFT takes a digital signal containing a certain number of samples and expresses it as the weighted sum of an equivalent number of frequencies.

"Weighted" means that some of those frequencies count more toward the total than others. Indeed, many of the frequencies may have such low weights that they can be safely disregarded. That's why the Fourier transform is useful for compression. An eight-by-eight block of pixels can be thought of as a 64-sample signal, and thus as the sum of 64 different frequencies. But as the researchers point out in their new paper, empirical studies show that on average, 57 of those frequencies can be discarded with minimal loss of image quality.

Heavyweight division

Signals whose Fourier transforms include a relatively small number of heavily weighted frequencies are called "sparse." The new algorithm determines the weights of a signal's most heavily weighted frequencies; the sparser the signal, the greater the speedup the algorithm provides. Indeed, if the signal is sparse enough, the algorithm can simply sample it randomly rather than reading it in its entirety.

"In nature, most of the normal signals are sparse," says Dina Katabi, one of the developers of the new algorithm. Consider, for instance, a recording of a piece of chamber music: The composite signal consists of only a few instruments each playing only one note at a time. A recording, on the other hand, of all possible instruments each playing all possible notes at once wouldn't be sparse -- but neither would it be a signal that anyone cares about.

The new algorithm -- which associate professor Katabi and professor Piotr Indyk, both of MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL), developed together with their students Eric Price and Haitham Hassanieh -- relies on two key ideas. The first is to divide a signal into narrower slices of bandwidth, sized so that a slice will generally contain only one frequency with a heavy weight.

In signal processing, the basic tool for isolating particular frequencies is a filter. But filters tend to have blurry boundaries: One range of frequencies will pass through the filter more or less intact; frequencies just outside that range will be somewhat attenuated; frequencies outside that range will be attenuated still more; and so on, until you reach the frequencies that are filtered out almost perfectly.

If it so happens that the one frequency with a heavy weight is at the edge of the filter, however, it could end up so attenuated that it can't be identified. So the researchers' first contribution was to find a computationally efficient way to combine filters so that they overlap, ensuring that no frequencies inside the target range will be unduly attenuated, but that the boundaries between slices of spectrum are still fairly sharp.

Zeroing in

Once they've isolated a slice of spectrum, however, the researchers still have to identify the most heavily weighted frequency in that slice. In the SODA paper, they do this by repeatedly cutting the slice of spectrum into smaller pieces and keeping only those in which most of the signal power is concentrated. But in an as-yet-unpublished paper, they describe a much more efficient technique, which borrows a signal-processing strategy from 4G cellular networks. Frequencies are generally represented as up-and-down squiggles, but they can also be though of as oscillations; by sampling the same slice of bandwidth at different times, the researchers can determine where the dominant frequency is in its oscillatory cycle.

Two University of Michigan researchers -- Anna Gilbert, a professor of mathematics, and Martin Strauss, an associate professor of mathematics and of electrical engineering and computer science -- had previously proposed an algorithm that improved on the FFT for very sparse signals. "Some of the previous work, including my own with Anna Gilbert and so on, would improve upon the fast Fourier transform algorithm, but only if the sparsity k" -- the number of heavily weighted frequencies -- "was considerably smaller than the input size n," Strauss says. The MIT researchers' algorithm, however, "greatly expands the number of circumstances where one can beat the traditional FFT," Strauss says. "Even if that number k is starting to get close to n -- to all of them being important -- this algorithm still gives some improvement over FFT."


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Larry Hardesty. Note: Materials may be edited for content and length.


Journal Reference:

  1. Haitham Hassanieh, Piotr Indyk, Dina Katabi, Eric Price. Nearly Optimal Sparse Fourier Transform. Arxiv, 2012 [link]

Cite This Page:

Massachusetts Institute of Technology. "Faster-than-fast Fourier transform." ScienceDaily. ScienceDaily, 18 January 2012. <www.sciencedaily.com/releases/2012/01/120118123054.htm>.
Massachusetts Institute of Technology. (2012, January 18). Faster-than-fast Fourier transform. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2012/01/120118123054.htm
Massachusetts Institute of Technology. "Faster-than-fast Fourier transform." ScienceDaily. www.sciencedaily.com/releases/2012/01/120118123054.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
NSA Director: China Can Damage US Power Grid

NSA Director: China Can Damage US Power Grid

AP (Nov. 20, 2014) China and "one or two" other countries are capable of mounting cyberattacks that would shut down the electric grid and other critical systems in parts of the United States, according to Adm. Michael Rogers, director of the National Security Agency and hea Video provided by AP
Powered by NewsLook.com
You Now 'Get' No-Cost Downloads In Apple's App Store

You Now 'Get' No-Cost Downloads In Apple's App Store

Newsy (Nov. 20, 2014) Apple has changed its App Store wording from "Free" to "Get," as the European Commission and Federal Trade Commission seek to protect consumers. Video provided by Newsy
Powered by NewsLook.com
Google Blocks Its Own Ads With New Contributor Program

Google Blocks Its Own Ads With New Contributor Program

Newsy (Nov. 20, 2014) Google's unveiled a crowdfunding platform dubbed Contributor, which allows people to pay for ad-free sites. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins