Featured Research

from universities, journals, and other organizations

Superconductivity success in fullerene nanowhiskers

Date:
January 22, 2012
Source:
National Institute for Materials Science
Summary:
Scientists have succeeded in realizing superconductivity in fullerene nanowhiskers, which are a nanosized carbon material that is lightweight and has a fine fibrous shape. This is a big step toward creating lightweight, flexible superconducting materials.

Critical current density of the developed fullerene nanowhisker superconductor (5K). The critical current density remains constant over a wide range of field intensities, showing that this material has excellent superconducting properties.
Credit: Image courtesy of National Institute for Materials Science

The National Institute for Materials Science succeeded in realizing superconductivity in fullerene nanowhiskers, which are a nanosized carbon material that is lightweight and has a fine fibrous shape. This is a big step toward creating lightweight, flexible superconducting materials.

The National Institute for Materials Science succeeded in realizing superconductivity in fullerene nanowhiskers, which are a nanosized carbon material that is lightweight and has a fine fibrous shape. Among the conventional superconducting materials, superconductors with comparatively high superconducting transition temperatures were mainly intermetallic compounds or ceramics, and those were often heavy, hard materials.

This research will enable development of new thread-like and cloth-like superconducting materials called "Flexible, lightweight superconductors." This research result was achieved through joint research by Dr. Yoshihiko Takano, Group Leader of the NIMS Nano Frontier Materials Group, Dr. Hiroyuki Takeya, a Chief Researcher of the same group, and a team headed by Dr. Kun'ichi Miyazawa, Group Leader of the NIMS Fullerene Engineering Group.

Superconductivity is expected to play a key role in solving many environmental and energy problems, as electrical energy can be transported with no loss. Fullerenes have attracted attention as a substance that may make it possible to realize this with lightweight carbon. The fullerene C60, which was discovered in 1985, is a carbon material in which carbon atoms are arranged in a shape resembling a soccer ball. It was also found that fullerenes display superconductivity when doped with a small amount of potassium. Because fullerenes are composed of carbon, high expectations are placed on this material as a "lightweight superconductor." However, it was difficult to obtain good quality superconductors with the reaction process used until now, as the percentage of the fullerene feedstock which displayed superconductivity was extremely small, at less than 1% with treatment for one day.

In this research, the NIMS team succeeded for the first time in the world in realizing superconductivity in a fullerene-based material by adding potassium to fullerene nanowhiskers, which are a nano-sized thread-like substance that can be synthesized from fullerenes, and heat-treating the resulting nanowhiskers. Even when the material manifests superconductivity, it retains its fine, fibrous structure. Furthermore, substantially 100% of the specimen material becomes a superconductor with heat treatment for one day. From the results of magnetization measurements, the superconducting transition temperature is approximately 17K. The critical current density is extremely high, at 105A/cm2, even in a magnetic field, and the decrease in the critical current density accompanying increased field strength is slight. From these results, it is clear that this is an outstanding superconducting material.

Many materials with high superconducting transition temperatures, beginning with high temperature superconductors, MgB2, etc. are hard and brittle, and a high level of technology was necessary to process those materials into wire form, for example, for superconducting electrical wire. However, because the fullerene nanowhisker superconductor obtained in this research is lightweight, has a fine fiber-like shape from the initial stage, and maintains that fine, fibrous shape even after the appearance of superconductivity, it is considered that superconducting materials with diverse forms, such as a bundled fiber form, cloth-like form, and the like will be produced in the future. Thus, this achievement is a great advance toward the realization of lightweight, flexible superconductors.

This research result was achieved as part of the research topic "Research on Carbon-based Materials" (Research Representative: Yoshihiko Takano) of the Grant-in-Aid for Scientific Research on Priority Areas Program (Research Supervisor: Katsumi Tanigaki) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the NIMS project, "Development of Novel Nanocarbon Materials and Their Functionalization" (Sub-theme Leader: Kun'ichi Miyazawa).


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Cite This Page:

National Institute for Materials Science. "Superconductivity success in fullerene nanowhiskers." ScienceDaily. ScienceDaily, 22 January 2012. <www.sciencedaily.com/releases/2012/01/120122102919.htm>.
National Institute for Materials Science. (2012, January 22). Superconductivity success in fullerene nanowhiskers. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2012/01/120122102919.htm
National Institute for Materials Science. "Superconductivity success in fullerene nanowhiskers." ScienceDaily. www.sciencedaily.com/releases/2012/01/120122102919.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins