Featured Research

from universities, journals, and other organizations

Superconductivity success in fullerene nanowhiskers

Date:
January 22, 2012
Source:
National Institute for Materials Science
Summary:
Scientists have succeeded in realizing superconductivity in fullerene nanowhiskers, which are a nanosized carbon material that is lightweight and has a fine fibrous shape. This is a big step toward creating lightweight, flexible superconducting materials.

Critical current density of the developed fullerene nanowhisker superconductor (5K). The critical current density remains constant over a wide range of field intensities, showing that this material has excellent superconducting properties.
Credit: Image courtesy of National Institute for Materials Science

The National Institute for Materials Science succeeded in realizing superconductivity in fullerene nanowhiskers, which are a nanosized carbon material that is lightweight and has a fine fibrous shape. This is a big step toward creating lightweight, flexible superconducting materials.

The National Institute for Materials Science succeeded in realizing superconductivity in fullerene nanowhiskers, which are a nanosized carbon material that is lightweight and has a fine fibrous shape. Among the conventional superconducting materials, superconductors with comparatively high superconducting transition temperatures were mainly intermetallic compounds or ceramics, and those were often heavy, hard materials.

This research will enable development of new thread-like and cloth-like superconducting materials called "Flexible, lightweight superconductors." This research result was achieved through joint research by Dr. Yoshihiko Takano, Group Leader of the NIMS Nano Frontier Materials Group, Dr. Hiroyuki Takeya, a Chief Researcher of the same group, and a team headed by Dr. Kun'ichi Miyazawa, Group Leader of the NIMS Fullerene Engineering Group.

Superconductivity is expected to play a key role in solving many environmental and energy problems, as electrical energy can be transported with no loss. Fullerenes have attracted attention as a substance that may make it possible to realize this with lightweight carbon. The fullerene C60, which was discovered in 1985, is a carbon material in which carbon atoms are arranged in a shape resembling a soccer ball. It was also found that fullerenes display superconductivity when doped with a small amount of potassium. Because fullerenes are composed of carbon, high expectations are placed on this material as a "lightweight superconductor." However, it was difficult to obtain good quality superconductors with the reaction process used until now, as the percentage of the fullerene feedstock which displayed superconductivity was extremely small, at less than 1% with treatment for one day.

In this research, the NIMS team succeeded for the first time in the world in realizing superconductivity in a fullerene-based material by adding potassium to fullerene nanowhiskers, which are a nano-sized thread-like substance that can be synthesized from fullerenes, and heat-treating the resulting nanowhiskers. Even when the material manifests superconductivity, it retains its fine, fibrous structure. Furthermore, substantially 100% of the specimen material becomes a superconductor with heat treatment for one day. From the results of magnetization measurements, the superconducting transition temperature is approximately 17K. The critical current density is extremely high, at 105A/cm2, even in a magnetic field, and the decrease in the critical current density accompanying increased field strength is slight. From these results, it is clear that this is an outstanding superconducting material.

Many materials with high superconducting transition temperatures, beginning with high temperature superconductors, MgB2, etc. are hard and brittle, and a high level of technology was necessary to process those materials into wire form, for example, for superconducting electrical wire. However, because the fullerene nanowhisker superconductor obtained in this research is lightweight, has a fine fiber-like shape from the initial stage, and maintains that fine, fibrous shape even after the appearance of superconductivity, it is considered that superconducting materials with diverse forms, such as a bundled fiber form, cloth-like form, and the like will be produced in the future. Thus, this achievement is a great advance toward the realization of lightweight, flexible superconductors.

This research result was achieved as part of the research topic "Research on Carbon-based Materials" (Research Representative: Yoshihiko Takano) of the Grant-in-Aid for Scientific Research on Priority Areas Program (Research Supervisor: Katsumi Tanigaki) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the NIMS project, "Development of Novel Nanocarbon Materials and Their Functionalization" (Sub-theme Leader: Kun'ichi Miyazawa).


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Cite This Page:

National Institute for Materials Science. "Superconductivity success in fullerene nanowhiskers." ScienceDaily. ScienceDaily, 22 January 2012. <www.sciencedaily.com/releases/2012/01/120122102919.htm>.
National Institute for Materials Science. (2012, January 22). Superconductivity success in fullerene nanowhiskers. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/01/120122102919.htm
National Institute for Materials Science. "Superconductivity success in fullerene nanowhiskers." ScienceDaily. www.sciencedaily.com/releases/2012/01/120122102919.htm (accessed April 16, 2014).

Share This



More Matter & Energy News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Patents Contact Lens Cameras; Internet Is Wary

Google Patents Contact Lens Cameras; Internet Is Wary

Newsy (Apr. 15, 2014) Google has filed for a patent to develop contact lenses capable of taking photos. The company describes possible benefits to blind people. Video provided by Newsy
Powered by NewsLook.com
The Walking, Talking Oil-Drigging Rig

The Walking, Talking Oil-Drigging Rig

Reuters - Business Video Online (Apr. 15, 2014) Pennsylvania-based Schramm is incorporating modern technology in its next generation oil-drigging rigs, making them smaller, safer and smarter. Ernest Scheyder reports. Video provided by Reuters
Powered by NewsLook.com
Dutch Highway Introduces Glow-In-The-Dark Paint

Dutch Highway Introduces Glow-In-The-Dark Paint

Newsy (Apr. 14, 2014) A Dutch highway has become the first lit by glow-in-the-dark paint — a project aimed at reducing street light use. Video provided by Newsy
Powered by NewsLook.com
Google Buys Drone Maker, Hopes to Connect Rural World

Google Buys Drone Maker, Hopes to Connect Rural World

Newsy (Apr. 14, 2014) Formerly courted by Facebook, Titan Aerospace will become a part of Google's quest to blanket the world in Internet connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins