Featured Research

from universities, journals, and other organizations

Cancer sequencing initiative discovers mutations tied to aggressive childhood brain tumors

Date:
January 29, 2012
Source:
St. Jude Children's Research Hospital
Summary:
A cancer sequencing initiative has discovered mutations tied to aggressive childhood brain tumors. Early evidence suggests the alterations play a unique role in other aggressive pediatric brain tumors as well.

St. Jude Children's Research Hospital -- Washington University Pediatric Cancer Genome Project has provided the first evidence linking cancer to mutations in genes involved in DNA organization. Researchers studying a rare, lethal childhood tumor of the brainstem discovered that nearly 80 percent of the tumors have mutations in genes not previously tied to cancer. Early evidence suggests the alterations play a unique role in other aggressive pediatric brain tumors as well.

The findings from the St. Jude Children's Research Hospital -- Washington University Pediatric Cancer Genome Project (PCGP) offer important insight into a poorly understood tumor that kills more than 90 percent of patients within two years. The tumor, diffuse intrinsic pontine glioma (DIPG), is found almost exclusively in children and accounts for 10 to 15 percent of pediatric tumors of the brain and central nervous system.

"We are hopeful that identifying these mutations will lead us to new selective therapeutic targets, which are particularly important since this tumor cannot be treated surgically and still lacks effective therapies," said Suzanne Baker, Ph.D., co-leader of the St. Jude Neurobiology and Brain Tumor Program and a member of the St. Jude Department of Developmental Neurobiology. She is a corresponding author of the study published in the January 29 online edition of the scientific journal Nature Genetics.

DIPG is an extremely invasive tumor that occurs in the brainstem, which is at the base of the skull and controls such vital functions as breathing and heart rate. DIPG cannot be cured by surgery and is accurately diagnosed by non-invasive imaging. As a result, DIPG is rarely biopsied in the U.S. and little is known about it.

Cancer occurs when normal gene activity is disrupted, allowing for the unchecked cell growth and spread that makes cancer so lethal. In this study, investigators found 78 percent of the DIPG tumors had alterations in one of two genes that carry instructions for making proteins that play similar roles in packaging DNA inside cells. Both belong to the histone H3 family of proteins. DNA must be wrapped around histones so that it is compact enough to fit into the nucleus. The packaging of DNA by histones influences which genes are switched on or off, as well as the repair of mutations in DNA and the stability of DNA. Disruption of any of these processes can contribute to cancer.

Researchers said that the mutations seem unique to aggressive childhood brain tumors.

"It is amazing to see that this particular tumor type appears to be characterized by a molecular 'smoking gun' and that these mutations are unique to fast-growing pediatric cancers in the brain," said Richard K. Wilson, Ph.D., director of The Genome Institute at Washington University School of Medicine in St. Louis and one of the study's corresponding authors. "This is exactly the type of result one hopes to find when studying the genomes of cancer patients."

The results are the latest from the PCGP, an ambitious three-year effort to sequence the complete normal and cancer genomes of 600 children with some of the most poorly understood and aggressive pediatric cancers. The human genome includes the complete set of instructions needed to assemble and sustain human life. The goal is to identify differences that explain why cancer develops, spreads and kills. Researchers believe the findings will provide the foundation for new tools to diagnose, treat or prevent the disease.

For this study, researchers sequenced the complete normal and cancer genomes of seven patients with DIPG. "The mutations were found at such high frequency in the cancer genomes of those seven patients that we immediately checked for the same alterations in a larger group of DIPGs," Baker said. When researchers sequenced all 16 of the related genes that make closely related variants of histone H3 proteins in an additional 43 DIPGs, they found many of the tumors contained the same mistakes in only two of these genes.

Of the 50 DIPG tumors included in this study, 60 percent had a single alteration in the makeup of the H3F3A gene. When the mutated gene was translated into a protein, the point mutation led to the substitution of methionine for lysine as the 27th amino acid in this variant of histone H3 protein. Another 18 percent of the DIPG patients carried the same mistake in a different gene, HIST1H3B.

Researchers are now working to understand how mutations in H3F3A and HIST1H3B impact cell function and contribute to cancer. Earlier research provides some clues. The lysine that is mutated is normally targeted by enzymes that attach other molecules to histone H3, influencing how it interacts with other proteins that regulate gene expression, Baker said. Mutations in the enzymes that target histone H3 have been identified in other cancers, but this is the first report showing a specific alteration of histones in cancer.

H3F3A and HIST1H3B were also mutated in other aggressive childhood brain tumors, glioblastoma, that develop outside the brain stem. Of 36 such tumors included in this study, 36 percent carried one of three distinct point mutations in the genes. The alterations included another single change in the makeup of H3F3A not found in DIPGs.

The histone H3 genes, however, were not mutated in any of the 252 other childhood tumors researchers checked for this study. The list included the brain tumors known as low-grade gliomas, medulloblastomas and ependymomas plus other cancers outside the brain and nervous system. The H3 changes have not been reported in any other cancers, including adult glioblastoma. "This suggests these particular mutations give a very important selective advantage, particularly in the developing brainstem and to a lesser degree in the developing brain, which leads to a terribly aggressive brain tumor in children, but not in adults," Baker said.

"This discovery would not have been possible without the unbiased approach taken by the Pediatric Cancer Genome Project," Baker said. "The mutations had not been reported in any other tumor, so we would not have searched for them in DIPGs. Yet the alterations clearly play an important role in generating this particular tumor."

The study's first authors are Gang Wu, Alberto Broniscer and Troy McEachron, all of St. Jude. The study's other corresponding authors are Jinghui Zhang and James Downing, both of St. Jude. The other study authors are Charles Lu, Li Ding and Elaine Mardis, all of Washington University; and Barbara Paugh, Jared Becksfort, Chunxu Qu, Robert Huether, Matthew Parker, Junyuan Zhang, Amar Gajjar, Michael Dyer, Charles Mullighan, Richard Gilbertson and David Ellison, all of St. Jude.

The research was funded in part by the PCGP, including Kay Jewelers, a lead project sponsor; the National Institutes of Health, the Sydney Schlobohm Chair of Research from the National Brain Tumor Society; the Cure Starts Now Foundation, Smile for Sophie Forever Foundation, Tyler's Treehouse Foundation, Musicians Against Childhood Cancer, the Noyes Brain Tumor Foundation and ALSAC.


Story Source:

The above story is based on materials provided by St. Jude Children's Research Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gang Wu, Alberto Broniscer, Troy A McEachron, Charles Lu, Barbara S Paugh, Jared Becksfort, Chunxu Qu, Li Ding, Robert Huether, Matthew Parker, Junyuan Zhang, Amar Gajjar, Michael A Dyer, Charles G Mullighan, Richard J Gilbertson, Elaine R Mardis, Richard K Wilson, James R Downing, David W Ellison, Jinghui Zhang, Suzanne J Baker. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genetics, 2012; DOI: 10.1038/ng.1102

Cite This Page:

St. Jude Children's Research Hospital. "Cancer sequencing initiative discovers mutations tied to aggressive childhood brain tumors." ScienceDaily. ScienceDaily, 29 January 2012. <www.sciencedaily.com/releases/2012/01/120129151048.htm>.
St. Jude Children's Research Hospital. (2012, January 29). Cancer sequencing initiative discovers mutations tied to aggressive childhood brain tumors. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2012/01/120129151048.htm
St. Jude Children's Research Hospital. "Cancer sequencing initiative discovers mutations tied to aggressive childhood brain tumors." ScienceDaily. www.sciencedaily.com/releases/2012/01/120129151048.htm (accessed July 29, 2014).

Share This




More Health & Medicine News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins