Featured Research

from universities, journals, and other organizations

Precision time: A matter of atoms, clocks, and statistics

Date:
February 1, 2012
Source:
American Institute of Physics
Summary:
The ability to accurately measure a second in time is at the heart of many essential technologies; the most recognizable may be the Global Positioning System (GPS). A new paper addresses how achieving a stable and coordinated global measure of time requires more than just the world's most accurate timepieces; it also requires approximately 400 atomic clocks working as an ensemble.

The ability to accurately measure a second in time is at the heart of many essential technologies; the most recognizable may be the Global Positioning System (GPS). In a paper accepted for publication in the AIP's journal Review of Scientific Instruments, Judah Levine, a researcher at the National Institutes of Standards and Technology (NIST) and the University of Colorado at Boulder discusses how achieving a stable and coordinated global measure of time requires more than just the world's most accurate timepieces; it also requires approximately 400 atomic clocks working as an ensemble.

According to Levine, however, calculating the average time of an ensemble of clocks is difficult, and complicated statistics are needed to achieve greater accuracy and precision. These statistical calculations are essential to help counter one of the most important challenges in keeping and agreeing on time: distributing data without degrading the performance of the source clocks.

All atomic clocks operate in basically the same way, by comparing an electrical oscillator (a device engineered to keep time) with the transition frequency of an atom (one of nature's intrinsic time keepers). This atomic transition is a "flip" in the spin in the outermost electron of an atom -- an event that is predictable with an accuracy of a few parts per ten quadrillion. Comparing the natural and engineered signals produces the incredibly stable "tick" of an atomic clock.

Several algorithms are then used to estimate the time of the reference clock with respect to the ensemble of clocks. These calculations weed out as much error as possible and establish a reliable reference time. Levine notes that there are strengths and weaknesses in each of these statistical steps, but these weaknesses can be mitigated to some extent by also including retrospective data. So in essence, determining the current time relies on understanding how accurately researchers were able to calculate time in the past.

Even the next generation of atomic clocks and frequency standards are unlikely to eliminate the need for these timescale algorithms. However, keeping time and frequency signals and standards the same in all countries is essential and greatly simplifies international cooperation in areas such as navigation, telecommunication, and electric power distribution.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Judah Levine. The Statistical Modeling of Atomic Clocks and the Design of Time Scales. Review of Scientific Instruments, 2012; (accepted)

Cite This Page:

American Institute of Physics. "Precision time: A matter of atoms, clocks, and statistics." ScienceDaily. ScienceDaily, 1 February 2012. <www.sciencedaily.com/releases/2012/02/120201181451.htm>.
American Institute of Physics. (2012, February 1). Precision time: A matter of atoms, clocks, and statistics. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/02/120201181451.htm
American Institute of Physics. "Precision time: A matter of atoms, clocks, and statistics." ScienceDaily. www.sciencedaily.com/releases/2012/02/120201181451.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins