Featured Research

from universities, journals, and other organizations

Sharp images from the living mouse brain

Date:
February 6, 2012
Source:
Max-Planck-Gesellschaft
Summary:
Scientists have for the first time made finest details of nerve cells in the brain of a living mouse visible.

This STED image of a nerve cell in the upper brain layer of a living mouse shows in previously impossible detail the very fine dendritic protrusions of a nerve cell, the so-called spines, at which the synapses are located. The inset shows the mushroom-shaped head of such a dendritic spine at which the nerve cells receive information from their peers.
Credit: © Max Planck Institute for Biophysical Chemistry

To explore the most intricate structures of the brain in order to decipher how it functions -- Stefan Hell's team of researchers at the Max Planck Institute for Biophysical Chemistry in Göttingen has made a significant step closer to this goal. Using the STED microscopy developed by Hell, the scientists have, for the first time, managed to record detailed live images inside the brain of a living mouse. Captured in the previously impossible resolution of less than 70 nanometers, these images have made the minute structures visible which allow nerve cells to communicate with each other. This application of STED microscopy opens up numerous new possibilities for neuroscientists to decode fundamental processes in the brain.

Every day a huge quantity of information travels not only over our information superhighways; our brain must process an enormous amount of data as well. In order to do this, each of the approximately hundred billion nerve cells establishes contact with thousands of neighboring nerve cells. The entire data exchange takes place via contact sites -- the synapses. Only if the nerve cells communicate via such contact sites at the right time and at the right place can the brain master its complex tasks: We play a difficult piece of piano, learn to juggle, or remember the names of people we have not seen for years.

We can learn most about these important contact sites in the brain by observing them at work. When and where do new synapses form and why do they disappear elsewhere? This is not easy to determine, since details in living nerve cells can only be observed with optical microscopes. Due to the diffraction of light, however, structures located closer together than 200 nanometers (200 millionths of a millimeter) appear as a single blurred spot. The STED microscopy developed by Stefan Hell and his team at the Max Planck Institute for Biophysical Chemistry is a groundbreaking method devised to surpass this resolution limit. They use a simple trick: Closely-positioned elements are kept dark under a special laser beam so that they emit fluorescence sequentially one after the other, rather than simultaneously, and can therefore be distinguished. Using this technique, Hell's team has been able to increase the resolution by approximately tenfold compared to conventional optical microscopes.

STED microscopy has already found wide application in fields ranging from materials research to cell biology. Under this microscope, cell cultures and histological preparations have offered unique insights into the cellular nanocosmos. The first real-time video clips from the interior of a nerve cell have demonstrated how tiny transmitter vesicles migrate within the long nerve cell endings.

A vision becomes reality

What was only an ambitious vision a year ago has now become reality: to also study higher living organisms at this sharp resolution in the nanometer range. By looking directly into the brains of living mice using a STED microscope, Hell and his team were the first ones to image nerve cells in the upper brain layer of the rodent with resolution far beyond the diffraction limit.

"With our STED microscope we can clearly see the very fine dendritic structures of nerve cells at which the synapses are located in the brain of a living mouse. At a resolution of 70 nanometers, we easily recognize these so-called dendritic spines with their mushroom- or button-shaped heads," explains Hell. They are the clearest images of these fundamental contact sites in the brain to date. "To make these visible, we take genetically modified mice that produce large quantities of a yellow fluorescing protein in their nerve cells. This protein migrates into all the branches of the nerve cell, even into smallest, finest structures," adds Katrin Willig, a postdoctoral researcher in Hell's department. The genetically modified mice for these experiments originated from the group of Frank Kirchhoff at the Göttingen Max Planck Institute for Experimental Medicine. Images of the nerve cells taken seven to eight minutes apart revealed something surprising: The dendritic spine heads move and change their shape. "In the future, these super-sharp live images could even show how certain proteins are distributed at the contact points," adds Hell. With such increasingly detailed images of structures in the brain, Hell's team hopes to shed light onto the composition and function of the synapses on the molecular level.

Such insights could also help to better understand illnesses that are caused by synapse malfunction. Among these so-called synaptopathies are, for example, autism and epilepsy. As Hell explains, "Through STED microscopy and its application in living organisms, we should now be able to gain optical access of such illnesses on the molecular scale for the first time." As one of the two representatives of the Göttingen Research Center Molecular Physiology of the Brain funded by the German Research Foundation, he is committed to collaboration in his further research. Together with neurobiologists and neurologists, he and his team plan to transfer the progress made in imaging technology into fundamental knowledge about the functioning of our brains.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Berning, K. I. Willig, H. Steffens, P. Dibaj, S. W. Hell. Nanoscopy in a Living Mouse Brain. Science, 2012; 335 (6068): 551 DOI: 10.1126/science.1215369

Cite This Page:

Max-Planck-Gesellschaft. "Sharp images from the living mouse brain." ScienceDaily. ScienceDaily, 6 February 2012. <www.sciencedaily.com/releases/2012/02/120206122456.htm>.
Max-Planck-Gesellschaft. (2012, February 6). Sharp images from the living mouse brain. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2012/02/120206122456.htm
Max-Planck-Gesellschaft. "Sharp images from the living mouse brain." ScienceDaily. www.sciencedaily.com/releases/2012/02/120206122456.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) — Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) — A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) — Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) — NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins