Featured Research

from universities, journals, and other organizations

'Invisibility' cloak could protect buildings from earthquakes

Date:
February 14, 2012
Source:
Manchester University
Summary:
Mathematicians have developed the theory for a Harry Potter style 'cloaking' device which could protect buildings from earthquakes. Scientists have been working on the theory of invisibility cloaks which, until recently, have been merely the subject of science fiction.In recent times, however, scientists have been getting close to achieving 'cloaking' in a variety of contexts. The new work focuses on the theory of cloaking devices which could eventually help to protect buildings and structures from vibrations and natural disasters such as earthquakes.

Earthquake damage. New work focuses on the theory of cloaking devices which could eventually help to protect buildings and structures from vibrations and natural disasters such as earthquakes.
Credit: puckillustrations / Fotolia

University of Manchester mathematicians have developed the theory for a Harry Potter style 'cloaking' device which could protect buildings from earthquakes.

Dr William Parnell's team in the University's School of Mathematics have been working on the theory of invisibility cloaks which, until recently, have been merely the subject of science fiction.

In recent times, however, scientists have been getting close to achieving 'cloaking' in a variety of contexts. The work from the team at Manchester focuses on the theory of cloaking devices which could eventually help to protect buildings and structures from vibrations and natural disasters such as earthquakes.

Writing in the Proceedings of the Royal Society A, Dr Parnell has shown that by cloaking components of structures with pressurised rubber, powerful waves such as those produced by an earthquake would not 'see' the building -- they would simply pass around the structure and thus prevent serious damage or destruction. The building, or important components within it, could theoretically be 'cloaked'.

This 'invisibility' could prove to be of great significance in safeguarding key structures such as nuclear power plants, electric pylons and government offices from destruction from natural or terrorist attacks.

This is one of the latest 'cloaking' technologies to be developed -- a technique which makes an object near-invisible to waves whether they be light, sound or vibration.

The science fiction concept of the Cloak of Invisibility is of course most famously known from the Harry Potter books and films. But according to scientists, the scientific reality is not far behind.

Initial research into cloaking from light waves began about six years ago, but very little work has been done on waves in solid bodies such as waves produced by earthquakes despite its fundamental importance in a number of areas including the protection of buildings and their components.

Dr Parnell said: "Significant progress has been made, both theoretically and practically in the area of cloaking.

"Five or six years ago scientists started with light waves, and in the last few years we have started to consider other wave-types, most importantly perhaps sound and elastic waves. The real problem with the latter is that it is normally impossible to use naturally available materials as cloaks.

"We showed theoretically that pre-stressing a naturally available material -- rubber -- leads to a cloaking effect from a specific type of elastic wave. Our team is now working hard on more general theories and to understand how this theory can be realised in practice.

"This research has shown that we really do have the potential to control the direction and speed of elastic waves. This is important because we want to guide such waves in many contexts, especially in nano-applications such as in electronics for example.

"If the theory can be scaled up to larger objects then it could be used to create cloaks to protect buildings and structures, or perhaps more realistically to protect very important specific parts of those structures."


Story Source:

The above story is based on materials provided by Manchester University. Note: Materials may be edited for content and length.


Journal Reference:

  1. W. J. Parnell. Nonlinear pre-stress for cloaking from antiplane elastic waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011; 468 (2138): 563 DOI: 10.1098/rspa.2011.0477

Cite This Page:

Manchester University. "'Invisibility' cloak could protect buildings from earthquakes." ScienceDaily. ScienceDaily, 14 February 2012. <www.sciencedaily.com/releases/2012/02/120214100817.htm>.
Manchester University. (2012, February 14). 'Invisibility' cloak could protect buildings from earthquakes. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2012/02/120214100817.htm
Manchester University. "'Invisibility' cloak could protect buildings from earthquakes." ScienceDaily. www.sciencedaily.com/releases/2012/02/120214100817.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins