Featured Research

from universities, journals, and other organizations

Brain imaging differences evident at 6 months in high-risk infants who later develop autism

Date:
February 17, 2012
Source:
University of North Carolina at Chapel Hill School of Medicine
Summary:
A new study has found significant differences in brain development starting at age 6 months in high-risk infants who later develop autism, compared to high-risk infants who did not develop autism. The study also suggests that autism does not appear suddenly in young children, but instead develops over time during infancy, raising the possibility that scientists may be able to interrupt that process with targeted intervention.

This is an image of white matter pathways extracted from diffusion tensor imaging data for infants at-risk for autism. Warmer colors represent higher fractional anisotropy.
Credit: Image created by Jason Wolff, Ph.D.

A new study led by the University of North Carolina at Chapel Hill found significant differences in brain development starting at age 6 months in high-risk infants who later develop autism, compared to high-risk infants who did not develop autism.

"It's a promising finding," said Jason J. Wolff, PhD, lead author of the study and a postdoctoral fellow at UNC's Carolina Institute for Developmental Disabilities (CIDD). "At this point, it's a preliminary albeit great first step towards thinking about developing a biomarker for risk in advance of our current ability to diagnose autism."

The study also suggests, Wolff said, that autism does not appear suddenly in young children, but instead develops over time during infancy. This raises the possibility "that we may be able to interrupt that process with targeted intervention," he said.

Joseph Piven, MD, director of the CIDD, is senior author of the study.

The study was published online on Feb. 17 at AJP in Advance, a section of the website of the American Journal of Psychiatry. Its results are the latest from the ongoing Infant Brain Imaging Study (IBIS) Network, which is funded by the National Institutes of Health and headquartered at UNC. Piven received an NIH Autism Centers of Excellence (ACE) program network award for the IBIS Network in 2007. ACE networks consist of researchers at many facilities in locations throughout the country, all of whom work together on a single research question.

Participants in the study were 92 infants who all have older siblings with autism and thus are considered to be at high risk for autism themselves. All had diffusion tensor imaging -- which is a type of magnetic resonance imaging (MRI) -- at 6 months and behavioral assessments at 24 months. Most also had additional brain imaging scans at either or both 12 and 24 months.

At 24 months, 28 infants (30 percent) met criteria for autism spectrum disorders while 64 infants (70 percent) did not. The two groups differed in white matter fiber tract development -- pathways that connect brain regions -- as measured by fractional anisotropy (FA). FA measures white matter organization and development, based on the movement of water molecules through brain tissue.

This study examined 15 separate fiber tracts, and found significant differences in FA trajectories in 12 of the 15 tracts between infants who did develop autism versus infants who did not. Infants who later developed autism had elevated FA at six months but then experienced slower change over time. By 24 months of age, infants with autism had lower FA values than infants without autism.

"This evidence, which implicates multiple fiber pathways, suggests that autism is a whole-brain phenomenon not isolated to any particular brain region," Wolff said.

Eighteen researchers are listed as co-authors of the study. Study co-authors with UNC affiliations include Wolff, Piven, Hongbin Gu,PhD; Guido Gerig,PhD; Jed T. Elison, PhD; Martin Styner, PhD; Geraldine Dawson, PhD and Heather C. Hazlett, PhD. Other institutions and organizations that took part in the study include the University of Utah, Washington University in St. Louis, University of Washington, McGill University, Children's Hospital of Philadelphia and the University of Alberta.

In addition to funding from the NIH, the IBIS Network receives support from Autism Speaks and the Simons Foundation Autism Research Initiative.


Story Source:

The above story is based on materials provided by University of North Carolina at Chapel Hill School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jason J. Wolff. Differences in White Matter Fiber Tract Development Present From 6 to 24 Months in Infants With Autism. American Journal of Psychiatry, 2012; DOI: 10.1176/appi.ajp.2011.11091447

Cite This Page:

University of North Carolina at Chapel Hill School of Medicine. "Brain imaging differences evident at 6 months in high-risk infants who later develop autism." ScienceDaily. ScienceDaily, 17 February 2012. <www.sciencedaily.com/releases/2012/02/120217101052.htm>.
University of North Carolina at Chapel Hill School of Medicine. (2012, February 17). Brain imaging differences evident at 6 months in high-risk infants who later develop autism. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/02/120217101052.htm
University of North Carolina at Chapel Hill School of Medicine. "Brain imaging differences evident at 6 months in high-risk infants who later develop autism." ScienceDaily. www.sciencedaily.com/releases/2012/02/120217101052.htm (accessed July 31, 2014).

Share This




More Mind & Brain News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dieting At A Young Age Might Lead To Harmful Health Habits

Dieting At A Young Age Might Lead To Harmful Health Habits

Newsy (July 30, 2014) Researchers say women who diet at a young age are at greater risk of developing harmful health habits, including eating disorders and alcohol abuse. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Brain Differences Found at 6 Months in Infants Who Develop Autism

Feb. 17, 2012 A new study found significant differences in brain development starting at age 6 months in high-risk infants who later develop autism, compared to high-risk infants who did not develop autism. The ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins