Featured Research

from universities, journals, and other organizations

Heart beats to the rhythm of a circadian clock

Date:
February 22, 2012
Source:
Baylor College of Medicine
Summary:
Sudden cardiac death -- catastrophic and unexpected fatal heart stoppage -- is more likely to occur shortly after waking in the morning and in the late night. In a new study, an international consortium of researchers explains the molecular linkage between the circadian clock and the deadly heart rhythms that lead to sudden death.

Heart.
Credit: © adimas / Fotolia

Sudden cardiac death -catastrophic and unexpected fatal heart stoppage -- is more likely to occur shortly after waking in the morning and in the late night.

In a report in the journal Nature, an international consortium of researchers that includes Case Western Reserve University School of Medicine in Cleveland and Baylor College of Medicine explains the molecular linkage between the circadian clock and the deadly heart rhythms that lead to sudden death.

The answer begins with a controller of the circadian clock -- krόppel-like factor 15 (Klf15), which has been a long-time target of the laboratory of Dr. Mukesh Jain of Case Western, said Dr. Xander Wehrens, professor of molecular physiology and biophysics and cardiology at BCM, also an author.

Klf15, in turn, controls the level of a potassium channel-interacting protein (KChIP2), which affects how potassium flows out of heart muscle cells called cardiac myocytes.

Changes affect potassium current

Because the level of this KChIP2 protein fluctuates during the circadian or daily cycle, it can change the size of the potassium current in cardiac myocytes. Changes in this subunit or Klf15 can affect the potassium current that governs repolarization of the cardiac myocyte. Overall, this can shorten or lengthen the time the heart muscle has to empty the heart's pumping chamber (ventricle) of blood. This time interval for repolarization is critical. Too much or too little can result in abnormal heart rhythms called arrhythmias. As the heart loses the regularity of the beat, it cannot pump blood efficiently.

Studies of mice that lacked Klf15 and mice with a genetic change that caused them to make more Klf15 than normal increased the risk of deadly arrhythmias.

This was a proof of principle, said Wehrens.

"It is the first example of a molecular mechanism for the circadian change in susceptibility to cardiac arrhythmias," he said.

"If there was too much Klf15 or none, the mice were at risk for developing the arrhythmias," he said.

Long QT or Short QT

Because Klf15 is regulated by the circadian "clock," the rate of flow through the potassium channel goes up and down and if disrupted, can lead to a change that results in one of two known heart problems linked to sudden death -- long QT or short QT syndrome. (QT refers to an interval measured from an electrocardiogram or ECG, which corresponds to the electrical recovery time of heart.)

Wehrens credits Jain's laboratory with accomplishing much of the work. His laboratory performed the electrophysiology experiments with the mice that lacked Klf15 and those who produced too much, he said.

Much of the BCM work was done by Dr. Mark McCauley, a cardiology fellow who was a post-doctoral fellow in the laboratory at the time, said Wehrens.

Others who took part in this work include first author Darwin Jeyaraj, Saptarsi Haldar, Xiapoing Wan, Yuan Lu, Betty Eapen, Nikunj Sharma, Eckhard Ficker, Michael Cutler, and David Rosenbaum, all of Case Western; Jurgen A. Ripperger and Urs Albrecht of University of Fribourg in Switzerland; Kun Hu and Steven A. Shea of Brigham and Women's Hospital and Harvard Medical School in Boston; James Gulick, Atusushi Sanbe, and Jeffrey Robbins of Cincinnati Children's Hospital Medical Center; Sophie Demolombe of Universite de Nice Sophia Antipolis in Valbonne, France; and Roman Kondratov of Cleveland State University in Ohio.

Funding for this work came from the National Institutes of Health, the Heart Rhythm Society, the American Heart Association, the Swiss National Science Foundation, the Centre National de la Recherche Scientifique, and the Leducq Foundation.


Story Source:

The above story is based on materials provided by Baylor College of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Darwin Jeyaraj, Saptarsi M. Haldar, Xiaoping Wan, Mark D. McCauley, Jόrgen A. Ripperger, Kun Hu, Yuan Lu, Betty L. Eapen, Nikunj Sharma, Eckhard Ficker, Michael J. Cutler, James Gulick, Atsushi Sanbe, Jeffrey Robbins, Sophie Demolombe, Roman V. Kondratov, Steven A. Shea, Urs Albrecht, Xander H. T. Wehrens, David S. Rosenbaum, Mukesh K. Jain. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature, 2012; DOI: 10.1038/nature10852

Cite This Page:

Baylor College of Medicine. "Heart beats to the rhythm of a circadian clock." ScienceDaily. ScienceDaily, 22 February 2012. <www.sciencedaily.com/releases/2012/02/120222132559.htm>.
Baylor College of Medicine. (2012, February 22). Heart beats to the rhythm of a circadian clock. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/02/120222132559.htm
Baylor College of Medicine. "Heart beats to the rhythm of a circadian clock." ScienceDaily. www.sciencedaily.com/releases/2012/02/120222132559.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins