Featured Research

from universities, journals, and other organizations

Metal nanoparticles shine with customizable color

Date:
February 23, 2012
Source:
Harvard University
Summary:
Engineers have demonstrated a new kind of tunable color filter that uses optical nanoantennas to obtain precise control of color output.

The color output of a new type of optical filter created at Harvard depends on the polarization of the incoming light.
Credit: Image courtesy of Tal Ellenbogen.

Engineers at Harvard have demonstrated a new kind of tunable color filter that uses optical nanoantennas to obtain precise control of color output.

Whereas a conventional color filter can only produce one fixed color, a single active filter under exposure to different types of light can produce a range of colors.

The advance has the potential for application in televisions and biological imaging, and could even be used to create invisible security tags to mark currency. The findings appear in the February issue of Nano Letters.

Kenneth Crozier, Associate Professor of Electrical Engineering at the Harvard School of Engineering and Applied Sciences (SEAS), and colleagues have engineered the size and shape of metal nanoparticles so that the color they appear strongly depends on the polarization of the light illuminating them. The nanoparticles can be regarded as antennas -- similar to antennas used for wireless communications -- but much smaller in scale and operating at visible frequencies.

"With the advances in nanotechnology, we can precisely control the shape of the optical nanoantennas, so we can tune them to react differently with light of different colors and different polarizations," said co-author Tal Ellenbogen, a postdoctoral fellow at SEAS. "By doing so, we designed a new sort of controllable color filter."

Conventional RGB filters used to create color in today's televisions and monitors have one fixed output color (red, green, or blue) and create a broader palette of hues through blending. By contrast, each pixel of the nanoantenna-based filters is dynamic and able to produce different colors when the polarization is changed.

The researchers dubbed these filters "chromatic plasmonic polarizers" as they can create a pixel with a uniform color or complex patterns with colors varying as a function of position.

To demonstrate the technology's capabilities, the acronym LSP (short for localized surface plasmon) was created. With unpolarized light or with light which is polarized at 45 degrees, the letters are invisible (gray on gray). In polarized light at 90 degrees, the letters appear vibrant yellow with a blue background, and at 0 degrees the color scheme is reversed. By rotating the polarization of the incident light, the letters then change color, moving from yellow to blue.

"What is somewhat unusual about this work is that we have a color filter with a response that depends on polarization," says Crozier.

The researchers envision several kinds of applications: using the color functionality to present different colors in a display or camera, showing polarization effects in tissue for biomedical imaging, and integrating the technology into labels or paper to generate security tags that could mark money and other objects.

Seeing the color effects from current fabricated samples requires magnification, but large-scale nanoprinting techniques could be used to generate samples big enough to be seen with the naked eye. To build a television, for example, using the nanoantennas would require a great deal of advanced engineering, but Crozier and Ellenbogen say it is absolutely feasible.

Crozier credits the latest advance, in part, to taking a biological approach to the problem of color generation. Ellenbogen, who is, ironically, colorblind, had previously studied computational models of the visual cortex and brought such knowledge to the lab.

"The chromatic plasmonic polarizers combine two structures, each with a different spectral response, and the human eye can see the mixing of these two spectral responses as color," said Crozier.

"We would normally ask what is the response in terms of the spectrum, rather than what is the response in terms of the eye," added Ellenbogen.


Story Source:

The above story is based on materials provided by Harvard University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tal Ellenbogen, Kwanyong Seo, Kenneth B. Crozier. Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry. Nano Letters, 2012; 12 (2): 1026 DOI: 10.1021/nl204257g

Cite This Page:

Harvard University. "Metal nanoparticles shine with customizable color." ScienceDaily. ScienceDaily, 23 February 2012. <www.sciencedaily.com/releases/2012/02/120223221957.htm>.
Harvard University. (2012, February 23). Metal nanoparticles shine with customizable color. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2012/02/120223221957.htm
Harvard University. "Metal nanoparticles shine with customizable color." ScienceDaily. www.sciencedaily.com/releases/2012/02/120223221957.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins