Featured Research

from universities, journals, and other organizations

How heavy and light isotopes separate in magma

Date:
February 24, 2012
Source:
Case Western Reserve University
Summary:
In the crash-car derby between heavy and light isotopes vying for the coolest spots as magma turns to solid rock, weightier isotopes have an edge: momentum. The research may offer clues to how igneous rocks form.

In the crash-car derby between heavy and light isotopes vying for the coolest spots as magma turns to solid rock, weightier isotopes have an edge, research led by Case Western Reserve University shows.

This tiny detail may offer clues to how igneous rocks form.

As molten rock cools along a gradient, atoms want to move towards the cool end. This happens because hotter atoms move faster than cooler atoms and, therefore, hotter atoms move to the cool region faster than the cooler atoms move to the hot region.

Although all isotopes of the same element want to move towards the cool end, the big boys have more mass and, therefore, momentum, enabling them to keep moving on when they collide along the way.

"It's as if you have a crowded, sealed room of sumo wrestlers and geologists and a fire breaks out at one side of the room," said Daniel Lacks, chemical engineering professor and lead author of the paper. "All will try to move to the cooler side of the room, but the sumo wrestlers are able to push their way through and take up space on the cool side, leaving the geologists on the hot side of the room."

Lacks worked with former postdoctoral researcher Gaurav Goel and geology professor James A. Van Orman at Case Western Reserve; Charles J. Bopp IV and Craig C. Lundstrum, of University of Illinois, Urbana; and Charles E. Lesher of the University of California at Davis. They described their theory and confirming mathematics, computer modeling, and experiments in the current issue of Physical Review Letters.

Lacks, Van Orman and Lesher also published a short piece in the current issue of Nature, showing how their findings overturn an explanation based on quantum mechanics, published in that journal last year.

"The theoretical understanding of thermal isotope separation in gases was developed almost exactly 100 years ago by David Enskog, but there is as yet not a similar full understanding of this process in liquids," said Frank Richter, who is the Sewell Avery Distinguished Professor at the University of Chicago and a member of the National Academy of Sciences. He was not involved in the research. "This work by Lacks et al. is an important step towards remedying this situation."

This separation among isotopes of the same element is called fractionation.

Scientists have been able to see fractionation of heavy elements in igneous rocks only since the 1990s, Van Orman said. More sensitive mass spectrometers showed that instead of a homogenous distribution, the concentration ratio of heavy isotopes to light isotopes in some igneous rocks was up to 0.1 percent higher than in other rocks.

One way of producing this fractionation is by temperature.

To understand how this happens, the team of researchers created a series of samples made of molten magnesium silicate infused with elements of different mass, from oxygen on up to heavy uranium.

The samples, called silicate melts, were heated at one end in a standard lab furnace, creating temperature gradients in each. The melts were then allowed to cool and solidify.

The scientists then sliced the samples along gradient lines and dissolved the slices in acid. Analysis showed that no matter the element, the heavier isotopes slightly outnumbered the lighter at the cool end of the gradient.

Computer simulations of the atoms, using classical mechanics, agreed with the experimental results.

"The process depends on temperature differences and can be seen whether the temperature change across the sample is rapid or gradual," Lacks said.

Thermal diffusion through gases was one of the first methods used to separate isotopes, during the Manhattan Project. It turns out that isotope fractionation through silicate liquids is even more efficient than through gases.

"Fractionation can occur inside the Earth wherever a sustained temperature gradient exists," Van Orman said. "One place this might happen is at the margin of a magma chamber, where hot magma rests against cold rock. Another is nearly 1,800 miles inside the Earth, at the boundary of the liquid core and the silicate mantle."

The researchers are now adding pressure to the variables as they investigate further. This work was done at atmospheric pressure but where Earth's core and mantle meet, the pressure is nearly 1.4 million atmospheres.

Lacks and Van Orman are unsure whether high pressure will result in greater or lesser fractionation. They can see arguments in favor of either.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniel Lacks, Gaurav Goel, Charles Bopp, James Van Orman, Charles Lesher, Craig Lundstrom. Isotope Fractionation by Thermal Diffusion in Silicate Melts. Physical Review Letters, 2012; 108 (6) DOI: 10.1103/PhysRevLett.108.065901

Cite This Page:

Case Western Reserve University. "How heavy and light isotopes separate in magma." ScienceDaily. ScienceDaily, 24 February 2012. <www.sciencedaily.com/releases/2012/02/120224140502.htm>.
Case Western Reserve University. (2012, February 24). How heavy and light isotopes separate in magma. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/02/120224140502.htm
Case Western Reserve University. "How heavy and light isotopes separate in magma." ScienceDaily. www.sciencedaily.com/releases/2012/02/120224140502.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Massive Air Bag Recall Affects More Than 4.5 Million Vehicles

Massive Air Bag Recall Affects More Than 4.5 Million Vehicles

Reuters - US Online Video (Oct. 21, 2014) Major automakers are recalling millions of vehicles due to potentially defective front passenger air bag inflators that can rupture and spray metal shrapnel. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins