Featured Research

from universities, journals, and other organizations

Artificial 'womb' unlocks secrets of early embryo development

Date:
March 2, 2012
Source:
University of Nottingham
Summary:
Pioneering work has helped reveal for the first time a vital process in the development of the early mammalian embryo.

Digital rendering of an eight-cell embryo.
Credit: iStockphoto

Pioneering work by a leading University of Nottingham scientist has helped reveal for the first time a vital process in the development of the early mammalian embryo.

A team led by Professor of Tissue Engineering, Kevin Shakesheff, has created a new device in the form of a soft polymer bowl which mimics the soft tissue of the mammalian uterus in which the embryo implants. The research has been published in the journal Nature Communications.

This new laboratory culture method has allowed scientists to see critical aspects of embryonic development that have never been seen in this way before. For the first time it has been possible to grow embryos outside the body of the mother, using a mouse model, for just long enough to observe in real time processes of growth during a crucial stage between the fourth and eighth days of development.

Professor Shakesheff said: "Using our unique materials and techniques we have been able to give our research colleagues a previously unseen view of the incredible behaviour of cells at this vital stage of an embryo's development. We hope this work will unlock further secrets which could improve medical treatments that require tissues to regenerate and also open up more opportunities to improve IVF. In the future we hope to develop more technologies which will allow developmental biologists to understand how our tissue forms."

In the past it has only been possible to culture a fertilised egg for four days as it grows from a single cell into a blastocyst, a ball of 64 cells comprising stem cells which will form the body, and extra-embryonic cells which form the placenta and control stem cell development as the embryo develops. But scientists' knowledge of events at a cellular level after four days, when, to survive, the blastocyst has to implant into the mother's womb, has up to now been limited. Scientists have had to rely on snap shots taken from embryos removed from the living uterus at different stages of development.

Now, thanks to The University of Nottingham team's newly developed culture environment, scientists at Cambridge University have been able to observe and record new aspects of the development of the embryo after four days. Most importantly they have been able to see at first hand the process which is the first step in the formation of the head, involving pioneer cells moving a large distance (for a cell) within the embryo. They have observed clusters of extra-embryonic cells which signal where the head of the embryo should form. To track these cells in mouse embryos they have used a gene expressed only in this 'head' signalling region marked by a protein which glows.

In this way they have been able to work out that these cells come from one or two cells at the blastocyst stage whose progeny ultimately cluster together in a specific part of the embryo, before collectively migrating to the position at which they signal head development. The cells that lead this migration appear to have an important role in leading the rest and acting as pioneers.

This new breakthrough is part of a major research effort at Nottingham to learn how the development of the embryo can teach us how to repair the adult body. The work is led by Professor Kevin Shakesheff with funding from European Research Council.

Professor Shakesheff added: "Everyone reading this article grew themselves from a single cell. With weeks of the embryo forming all of the major tissues and organs are formed and starting to function. If we could harness this remarkable ability of the human body to self-form then we could design new medical treatments that cure diseases that are currently untreatable. For example, diseases and defects of the heart could be reversed if we could recreate the process by which cardiac muscle forms and gets wired into the blood and nervous system."

Professor Shakesheff's work was carried out in collaboration with scientists led by Professor Magdalena Zernicka-Goetz at the Gurdon Institute, Cambridge University.


Story Source:

The above story is based on materials provided by University of Nottingham. Note: Materials may be edited for content and length.


Journal Reference:

  1. Samantha A. Morris, Seema Grewal, Florencia Barrios, Sameer N. Patankar, Bernhard Strauss, Lee Buttery, Morgan Alexander, Kevin M. Shakesheff, Magdalena Zernicka-Goetz. Dynamics of anterior–posterior axis formation in the developing mouse embryo. Nature Communications, 2012; 3: 673 DOI: 10.1038/ncomms1671

Cite This Page:

University of Nottingham. "Artificial 'womb' unlocks secrets of early embryo development." ScienceDaily. ScienceDaily, 2 March 2012. <www.sciencedaily.com/releases/2012/03/120302101543.htm>.
University of Nottingham. (2012, March 2). Artificial 'womb' unlocks secrets of early embryo development. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2012/03/120302101543.htm
University of Nottingham. "Artificial 'womb' unlocks secrets of early embryo development." ScienceDaily. www.sciencedaily.com/releases/2012/03/120302101543.htm (accessed September 21, 2014).

Share This



More Plants & Animals News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: San Diego Zoo Welcomes Cheetah Cubs

Raw: San Diego Zoo Welcomes Cheetah Cubs

AP (Sep. 20, 2014) The San Diego Zoo has welcomed two Cheetah cubs to its Safari Park. The nearly three-week-old female cubs are being hand fed and are receiving around the clock care. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Chocolate Museum Opens in Brussels

Chocolate Museum Opens in Brussels

AFP (Sep. 19, 2014) Considered a "national heritage" in Belgium, chocolate now has a new museum in Brussels. In a former chocolate factory, visitors to the permanent exhibition spaces, workshops and tastings can discover derivatives of the cocoa bean. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins