Featured Research

from universities, journals, and other organizations

Scientists gain new insight into prefrontal cortex activity

Date:
March 5, 2012
Source:
Wake Forest Baptist Medical Center
Summary:
The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain systems that control cognitive functions has remained a mystery.

The brain has a remarkable ability to learn new cognitive tasks while maintaining previously acquired knowledge about various functions necessary for everyday life. But exactly how new information is incorporated into brain systems that control cognitive functions has remained a mystery.

Related Articles


A study by researchers at Wake Forest Baptist Medical Center and the McGovern Institute of the Massachusetts Institute of Technology shows how new information is encoded in neurons of the prefrontal cortex, the area of the brain involved in planning, decision making, working memory and learning.

"In this study we were able to isolate activity directly from the brain, allowing us to 'see' what was happening in the prefrontal cortex before and after a new task was learned," said Christos Constantinidis, Ph.D., associate professor of neurobiology and anatomy at Wake Forest Baptist and senior author of the study, published in the March 5 online edition of Proceedings of the National Academy of Sciences.

To gain insight into how learning a new task affects the prefrontal cortex, the researchers analyzed the electrical activity of neurons before and after training for the performance in two short-term memory tests. Two monkeys initially looked at a computer screen while various shapes, such as squares and circles, were displayed, and researchers recorded the electrical activity occurring in the brain. The same animals were then trained to recognize the various shapes, and to remember whether two symbols matched each other.

Using computational analysis of the neuronal recordings, the researchers compared data to assess what information was present before training and what new information arose while learning a new task. They found that learning was associated with activation of a small number of neurons that were highly specialized for the new task, while the same neurons maintained the existing information that was present before training.

"In essence, this select group of neurons was able to multitask by learning new information while retaining information they were already specialized for," Constantinidis said. "Our results show that although there was little change in the amount of basic stimulus information that neurons encoded before training, more complex information about whether the symbols matched became incorporated throughout the prefrontal cortex after training."

Overall these findings shed light on how new information is incorporated into the prefrontal cortex activity and how neural activity codes information, which should lead to richer theories of how the prefrontal cortex controls behavior and how information is encoded in neural activity more generally.

"We hope that our findings will help others who work with patients who have short-term memory problems resulting from strokes or traumatic brain injuries," Constantinidis said. "Computerized training to perform cognitive tasks, like those used in our study, has shown promise in cognitive rehabilitation, and for treatment of mental illnesses and conditions, such as schizophrenia and ADHD."

The research at Wake Forest Baptist was supported in part by grants from the National Eye Institute and the Tab Williams Family Endowment.

Co-authors of the study included Ethan Meyers, Ph.D., a postdoctoral fellow at Massachusetts Institute of Technology, and Xuelian Qi, Ph.D., a postdoctoral fellow at Wake Forest Baptist.


Story Source:

The above story is based on materials provided by Wake Forest Baptist Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ethan M. Meyers, Xue-Lian Qi, and Christos Constantinidis. Incorporation of new information into prefrontal cortical activity after learning working memory tasks. Proceedings of the National Academy of Sciences, March 5, 2012 DOI: 10.1073/pnas.1201022109

Cite This Page:

Wake Forest Baptist Medical Center. "Scientists gain new insight into prefrontal cortex activity." ScienceDaily. ScienceDaily, 5 March 2012. <www.sciencedaily.com/releases/2012/03/120305160656.htm>.
Wake Forest Baptist Medical Center. (2012, March 5). Scientists gain new insight into prefrontal cortex activity. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/03/120305160656.htm
Wake Forest Baptist Medical Center. "Scientists gain new insight into prefrontal cortex activity." ScienceDaily. www.sciencedaily.com/releases/2012/03/120305160656.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com
1st Responders Trained for Autism Sensitivity

1st Responders Trained for Autism Sensitivity

AP (Dec. 16, 2014) More departments are ordering their first responders to sit in on training sessions that focus on how to more effectively interact with those with autism spectrum disorder (Dec. 16) Video provided by AP
Powered by NewsLook.com
Guys Are Idiots, According To Sarcastic Study

Guys Are Idiots, According To Sarcastic Study

Newsy (Dec. 12, 2014) A study out of Britain suggest men are more idiotic than women based on the rate of accidental deaths and other factors. Video provided by Newsy
Powered by NewsLook.com
Believing in Father Christmas Good for Children's Imaginations

Believing in Father Christmas Good for Children's Imaginations

AFP (Dec. 12, 2014) As the countdown to Christmas gets underway, so too does the Father Christmas conspiracy. But psychologists say that telling our children about Santa, flying reindeer and elves is good for their imaginations. Duration: 01:57 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins