Featured Research

from universities, journals, and other organizations

Tailored optical material from DNA: Light-modifying nanoparticles

Date:
March 14, 2012
Source:
Technische Universitaet Muenchen
Summary:
In the human body genetic information is encoded in double-stranded deoxyribonucleic acid building blocks, the so-called DNA. Using artificial DNA molecules, an international team of scientists have produced nanostructured materials that can be used to modify visible light by specification.

Right-handed and left-handed nano spiral staircases differ visibly in their interaction with circular polarized light.
Credit: Tim Liedl / LMU

In the human body genetic information is encoded in double-stranded deoxyribonucleic acid building blocks, the so-called DNA. Using artificial DNA molecules, an international team of scientists headed by the Cluster of Excellence Nanosystems Initiative Munich (NIM) has produced nanostructured materials that can be used to modify visible light by specification. The researchers present their results in the current issue of the scientific journal Nature.

There was a lot of excitement a few years ago following the discovery of the DNA origami technique. The approach could be used to build nanoparticles of a given shape and size. However, real applications, such as nano-tweezers, remained out of reach. An international team of researchers led by Professor Tim Liedl of the Ludwig-Maximillians-Universitaet Muenchen and Professor Friedrich Simmel of the Technische Universitaet Muenchen have now succeeded in building nanoparticles using optically active DNA building blocks that can be used to modify light in very specific ways.

Coupling light and nanostructures may help significantly reduce the size of optical sensors for medical and environmental applications, while at the same time making them more sensitive. However, the size of a light wave stretching out over 400 to 800 nanometers is gigantic in comparison to nanostructures of only a few nanometers. Yet in theory, when tiniest structures work together in very specific ways, even small objects can interact very well with light. Unfortunately it is not possible to produce the requisite three-dimensional structures with nano-scale precision in sufficient quantities and purity using conventional methods.

"With DNA origami, we have now found a methodology that fulfills all of these requirements. It makes it possible to define in advance and with nanometer precision the three-dimensional shape of the object being created," says Professor Friedrich Simmel, who holds the Chair for Biomolecular Systems and Bionanotechnology at the TU Muenchen. Programmed solely using the sequence of basic building blocks, the nano-elements fold themselves into the desired structures." Friedrich Simmel's team successfully built nano spiral staircases 57 nanometers high and 34 nanometers in diameter with 10 nanometer gold particles attached at regular intervals.

On the surface of the gold particles the electrons react with the electromagnetic field of the light. The small clearance between the particles ensures that the gold particles of a DNA strand work in unison, thereby amplifying the interactions many fold. Professor Alexander O. Govorov, theoretical physicist at the Ohio State University in Athens, USA, had predicted that the effect should depend on the spacing, size and composition of the metal particles. Using the DNA origami method, the Munich physicists built up nanostructures in which they varied these parameters.

The results of these experiments confirm the predictions of their colleagues in every regard: Aqueous solutions of right-handed and left-handed nano spiral staircases differ visibly in their interactions with circular polarized light. Spiral staircases with large particles show a significantly stronger optical response than those with small particles. The chemical composition of the particles also had a large effect: When the gold particles were coated with a layer of silver, the optical resonance shifted from the red to the shorter wave blue domain.

By combining theoretical calculations and the possibilities of DNA origami, the researchers are now able to produce nano-optical materials with precisely specified characteristics. Professor Tim Liedl describes the path the research might follow: "We will now investigate whether we can use this method to influence the refraction index of the materials we manufacture. Materials with a negative refractive index could be used to develop novel optical lens systems -- so-called super lenses."

This work was funded by the Volkswagen Foundation, the DFG Cluster of Excellence Nanosystems Initiative Munich (NIM) and the National Science Foundation (NSF, USA).


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Anton Kuzyk, Robert Schreiber, Zhiyuan Fan, Gόnther Pardatscher, Eva-Maria Roller, Alexander Hφgele, Friedrich C. Simmel, Alexander O. Govorov, Tim Liedl. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature, 2012; 483 (7389): 311 DOI: 10.1038/nature10889

Cite This Page:

Technische Universitaet Muenchen. "Tailored optical material from DNA: Light-modifying nanoparticles." ScienceDaily. ScienceDaily, 14 March 2012. <www.sciencedaily.com/releases/2012/03/120314142837.htm>.
Technische Universitaet Muenchen. (2012, March 14). Tailored optical material from DNA: Light-modifying nanoparticles. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2012/03/120314142837.htm
Technische Universitaet Muenchen. "Tailored optical material from DNA: Light-modifying nanoparticles." ScienceDaily. www.sciencedaily.com/releases/2012/03/120314142837.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
China's Drone King Says the Revolution Depends on Regulators

China's Drone King Says the Revolution Depends on Regulators

Reuters - Business Video Online (July 30, 2014) — Comparing his current crop of drones to early personal computers, DJI founder Frank Wang says the industry is poised for a growth surge - assuming regulators in more markets clear it for takeoff. Jon Gordon reports. Video provided by Reuters
Powered by NewsLook.com
3Doodler Bring 3-D Printing to Your Hand

3Doodler Bring 3-D Printing to Your Hand

AP (July 30, 2014) — 3-D printing is a cool technology, but it's not exactly a hands-on way to make things. Enter the 3Doodler: the pen that turns you into the 3-D printer. AP technology writer Peter Svensson takes a closer look. (July 30) Video provided by AP
Powered by NewsLook.com
Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) — A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins