Featured Research

from universities, journals, and other organizations

Cheaper drugs and better health care with a single chip

Date:
March 15, 2012
Source:
Florida State University
Summary:
A researcher is developing technologies to miniaturize the first phase of a process used by pharmaceutical companies to discover new drugs. A breakthrough could ultimately lead to personalized and therefore more effective medical treatments, as well as major health care savings.

New technology being developed at Florida State University could significantly decrease the cost of drug discovery, potentially leading to increased access to high-quality health care and cancer patients receiving personalized chemotherapy treatments.

The details, which are spelled out in a recent publication of the journal Biomaterials, outline the work of Steven Lenhert, a Florida State biology assistant professor and principal investigator on the research effort.

"Right now, cancer patients receive chemotherapy treatments that are based on the accumulated knowledge of what has worked best for people with similar cancers," Lenhert said. "This is the case because hospitals don't have the technology to test thousands of different chemotherapy mixtures on the tumor cells of an individual patient. This technology could give them access to that capability, making the treatments truly personalized and much more effective."

Cancer treatments are costly and often difficult to prescribe. Steven Lenhert, a Florida State University Assistant Professor of Biological Science, believes the solution to rising costs and impersonal care lies in small plate the size of a computer chip-and he's got the research to back it up.

The key to Lenhert's invention is miniaturizing the first phase of a process used by pharmaceutical companies to discover new drugs. Right now, these companies use large, specialized laboratories to test hundreds of thousands of compounds on different cell cultures in a process known as high throughput screening. The equipment and manpower cost is substantial, even though only a tiny fraction of the compounds will ever make it to the next phase of testing.

Lenhert's technology miniaturizes that process by printing all of the compounds on a single glass surface and testing them on cells using an innovative technique involving liposome microarrays, which are basically collections of drug-containing oil drops on a surface. If fully employed in the pharmaceutical industry, this technology would make the cost of this expensive process a thousand times cheaper, creating the potential for personalized cancer treatments, lower-cost medicine and more affordable, higher-quality health care options.

"In looking at the first phase of the drug-discovery process, it struck me how, in this age of extreme miniaturization, we are still using rooms full of robots and equipment to test drug compounds," Lenhert said. "It reminded me of the early days of computers where you needed huge, room-spanning pieces of hardware to do the most mundane tasks. I said, 'There has to be a better way.'"

Lenhert's nanotechnology has been demonstrated as a proof of concept on a small scale with cells commonly grown in university laboratories. His research group is now working on scaling their technology up to the high levels needed to achieve medically relevant benefits. For personalized medicine applications, the "lab on a chip" technology could then be applied to cells obtained from patients through biopsies so doctors can determine which drugs will work on a particular patient. Depending on funding, Lenhert expects that the technology could be made commercially available after two years of development.

"We have taken an important first step in making liposome microarray technology viable for the pharmaceutical and medical industries," said Aubrey Kusi-Appiah, a graduate student in Lenhert's research group and first author on the published work. "We have established that it can be done."


Story Source:

The above story is based on materials provided by Florida State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aubrey E. Kusi-Appiah, Nicholas Vafai, Paula J. Cranfill, Michael W. Davidson, Steven Lenhert. Lipid multilayer microarrays for invitro liposomal drug delivery and screening. Biomaterials, 2012; DOI: 10.1016/j.biomaterials.2012.02.023

Cite This Page:

Florida State University. "Cheaper drugs and better health care with a single chip." ScienceDaily. ScienceDaily, 15 March 2012. <www.sciencedaily.com/releases/2012/03/120315095809.htm>.
Florida State University. (2012, March 15). Cheaper drugs and better health care with a single chip. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2012/03/120315095809.htm
Florida State University. "Cheaper drugs and better health care with a single chip." ScienceDaily. www.sciencedaily.com/releases/2012/03/120315095809.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins