Featured Research

from universities, journals, and other organizations

Bone marrow stem cells can improve heart function, study suggests

Date:
March 26, 2012
Source:
Mayo Clinic
Summary:
Physicians have found that stem cells derived from heart failure patients’ own bone marrow and injected into their hearts improved the function of the left ventricle, the heart’s pumping chamber. Researchers also found that certain types of the stem cells were associated with the largest improvement and warrant further study.

A research network led by a Mayo Clinic physician found that stem cells derived from heart failure patients' own bone marrow and injected into their hearts improved the function of the left ventricle, the heart's pumping chamber. Researchers also found that certain types of the stem cells were associated with the largest improvement and warrant further study.

Related Articles


The results were presented March 26 at the 2012 American College of Cardiology Meeting in Chicago. They will also be published online in the Journal of the American Medical Association.

This Phase II clinical trial, designed to test this strategy to improve cardiac function, is an extension of earlier efforts in Brazil in which a smaller number of patients received fewer stem cells. For this new network study, 92 patients received a placebo or 100 million stem cells derived from the bone marrow in their hips in a one-time injection. This was the first study in humans to deliver that many bone marrow stem cells.

"We found that the bone marrow cells did not have a significant impact on the original end points that we chose, which involved reversibility of a lack of blood supply to the heart, the volume of the left ventricle of the heart at the end of a contraction, and maximal oxygen consumption derived through a treadmill test," says Robert Simari, M.D., a cardiologist at Mayo Clinic in Rochester, Minn. He is chairman of the Cardiovascular Cell Therapy Research Network (CCTRN), the network of five academic centers and associated satellite sites that conducted the study. The CCTRN is supported by the National Heart, Lung, and Blood Institute, which also funded the study.

"But interestingly, we did find that the very simple measure of ejection fraction was improved in the group that received the cells compared to the placebo group by 2.7 percent," Dr. Simari says. Ejection fraction is the percentage of blood pumped out of the left ventricle during each contraction.

Study principal investigators Emerson Perin, M.D., Ph.D., and James Willerson, M.D., of the Texas Heart Institute, explain that even though 2.7 percent does not seem like a large number, it is statistically significant and means an improvement in heart function for chronic heart failure patients who have no other options.

"This was a pretty sick population," Dr. Perin says. "They had already had heart attacks, undergone bypass surgery, and had stents placed. However, they weren't at the level of needing a heart transplant yet. In some patients, particularly those who were younger or whose bone marrows were enriched in certain stem cell populations, had even greater improvements in their ejection fractions."

The average age of study participants was 63. The researchers found that patients younger than 62 improved more. Their ejection fraction improved by 4.7 percent. The researchers looked at the makeup of these patients' stem cells from a supply stored at a biorepository established by the CCTRN. They found these patients had more CD34+ and CD133+ type of stem cells in their mixture.

"This tells us that the approach we used to deliver the stems cells was safe," Dr. Simari says. "It also suggests new directions for the next series of clinical trials, including the type of patients, endpoints to study and types of cells to deliver."

Other co-authors of the study are Guilherme Silva, M.D., Deirdre Smith, Lynette Westbrook; and James Chen, all of the Texas Heart Institute, St. Luke's Episcopal Hospital, Houston; Carl Pepine, M.D., R. David Anderson, M.D., Christopher Cogle, M.D., and Eileen Handberg, Ph.D., all of the University of Florida School of Medicine, Gainesville; Timothy Henry, M.D., Jay Traverse, M.D., and Rachel Olson, all of the Minneapolis Heart Institute at Abbott Northwestern Hospital; Doris Taylor, Ph.D., and Claudia Zierold, Ph.D., both of the University of Minnesota School of Medicine, Minneapolis; Stephen Ellis, M.D., James Thomas, M.D., and Carrie Geither, all of The Cleveland Clinic Foundation, Ohio; David Zhao, M.D., Marvin Kornenberg, M.D., Antonis Hatzopoulos, Ph.D., Sherry Bowman, and Judy Francescon, all of Vanderbilt University School of Medicine, Tennessee; Dejian Lai, Ph.D., Sarah Baraniuk, Ph.D., Linda Piller, M.D., Lara Simpson, Ph.D., Judy Bettencourt, Shelly Sayre, Rachel Vojvodic, and Lemuel Moye, M.D., Ph.D., all of The University of Texas School of Public Health, Houston; A. Daniel Martin, Ph.D., of the University of Florida College of Public Health and Health Professions, Gainesville; Marc Penn, M.D., Ph.D., of Northeast Ohio Medical University, Akron; Saif Anwaruddin, M.D., of Penn Heart and Vascular Hospital of the University of Pennsylvania, Philadelphia; Adrian Gee, Ph.D., and David Aguilar, M.D., of Baylor College of Medicine, Houston; Catalin Loghin, M.D., of The University of Texas Medical School, Houston; and Sonia Skarlatos, Ph.D., David Gordon, M.D., Ph.D., Ray Ebert, Ph.D., and Minjung Kwak, Ph.D., all of the National Heart, Lung and Blood Institute, Bethesda, MD.


Story Source:

The above story is based on materials provided by Mayo Clinic. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. C. Perin, J. T. Willerson, C. J. Pepine, T. D. Henry, S. G. Ellis, D. X. M. Zhao, G. V. Silva, D. Lai, J. D. Thomas, M. W. Kronenberg, A. D. Martin, R. D. Anderson, J. H. Traverse, M. S. Penn, S. Anwaruddin, A. K. Hatzopoulos, A. P. Gee, D. A. Taylor, C. R. Cogle, D. Smith, L. Westbrook, J. Chen, E. Handberg, R. E. Olson, C. Geither, S. Bowman, J. Francescon, S. Baraniuk, L. B. Piller, L. M. Simpson, C. Loghin, D. Aguilar, S. Richman, C. Zierold, J. Bettencourt, S. L. Sayre, R. W. Vojvodic, S. I. Skarlatos, D. J. Gordon, R. F. Ebert, M. Kwak, L. A. Moye, R. D. Simari. Effect of Transendocardial Delivery of Autologous Bone Marrow Mononuclear Cells on Functional Capacity, Left Ventricular Function, and Perfusion in Chronic Heart Failure: The FOCUS-CCTRN Trial. JAMA: The Journal of the American Medical Association, 2012; DOI: 10.1001/jama.2012.418

Cite This Page:

Mayo Clinic. "Bone marrow stem cells can improve heart function, study suggests." ScienceDaily. ScienceDaily, 26 March 2012. <www.sciencedaily.com/releases/2012/03/120326112508.htm>.
Mayo Clinic. (2012, March 26). Bone marrow stem cells can improve heart function, study suggests. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/03/120326112508.htm
Mayo Clinic. "Bone marrow stem cells can improve heart function, study suggests." ScienceDaily. www.sciencedaily.com/releases/2012/03/120326112508.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

More Coverage


Treatment of Ischemic Heart Failure With Bone Marrow Cells Does Not Show Improvement for Certain Heart Function Measures

Mar. 24, 2012 Use of a patient's bone marrow cells for treating chronic ischemic heart failure did not result in improvement on most measures of heart function, according to a new ... read more

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins