Featured Research

from universities, journals, and other organizations

New plastics 'bleed' when cut or scratched -- and then heal like human skin

Date:
March 27, 2012
Source:
American Chemical Society (ACS)
Summary:
A new genre of plastics that mimic the human skin’s ability to heal scratches and cuts offers the promise of endowing cell phones, laptops, cars and other products with self-repairing surfaces, scientists have reported. The plastics change color to warn of wounds and heal themselves when exposed to light.

New plastics turn red when damaged, then heal themselves when exposed to light.
Credit: Prof. Marek W. Urban, Ph.D.

A new genre of plastics that mimic the human skin's ability to heal scratches and cuts offers the promise of endowing cell phones, laptops, cars and other products with self-repairing surfaces, scientists reported March 27. The team's lead researcher described the plastics, which change color to warn of wounds and heal themselves when exposed to light, in San Diego at the 243rd National Meeting & Exposition of the American Chemical Society (ACS).

"Mother Nature has endowed all kinds of biological systems with the ability to repair themselves," explained Professor Marek W. Urban, Ph.D., who reported on the research. "Some we can see, like the skin healing and new bark forming in cuts on a tree trunk. Some are invisible, but help keep us alive and healthy, like the self-repair system that DNA uses to fix genetic damage to genes. Our new plastic tries to mimic nature, issuing a red signal when damaged and then renewing itself when exposed to visible light, temperature or pH changes."

Urban, who is with the University of Southern Mississippi in Hattiesburg foresees a wide range of potential applications for plastic with warn-and-self-repair capabilities. Scratches in automobile fenders, for instance, might be repaired by simply exposing the fender to intense light. Critical structural parts in aircraft might warn of damage by turning red along cracks so that engineers could decide whether to shine the light and heal the damage or undertake a complete replacement of the component. And there could be a range of applications in battlefield weapons systems.

Plastics have become so common, replacing steel, aluminum, glass, paper and other traditional materials because they combine desirable properties such as strength, light weight and corrosion resistance. Hundreds of scientists around the world have been working, however, to remedy one of the downsides of these ubiquitous materials: Once many plastics get scratched or cracked, repairs can be difficult or impossible.

Self-healing plastics have become a Holy Grail of materials science. One approach to that goal involves seeding plastics with capsules that break open when cracked or scratched and release repairing compounds that heal scratches or cuts. Another is to make plastics that respond to an outside stimulus -- like light, heat or a chemical agent -- by repairing themselves.

Urban's group developed plastics with small molecular links or "bridges" that span the long chains of chemicals that compose plastic. When plastic is scratched or cracked, these links break and change shape. Urban tweaked them so that changes in shape produce a visible color change -- a red splotch that forms around the defect. In the presence of ordinary sunlight or visible light from a light bulb, pH changes or temperature, the bridges reform, healing the damage and erasing the red mark.

Urban cited other advantages of the new plastic. Unlike self-healing plastics that rely on embedded healing compounds that can self-repair only once, this plastic can heal itself over and over again. The material also is more environmentally friendly than many other plastics, with the process for producing the plastic water-based, rather than relying on potentially toxic ingredients. And his team now is working on incorporating the technology into plastics that can withstand high temperatures.


Story Source:

The above story is based on materials provided by American Chemical Society (ACS). Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society (ACS). "New plastics 'bleed' when cut or scratched -- and then heal like human skin." ScienceDaily. ScienceDaily, 27 March 2012. <www.sciencedaily.com/releases/2012/03/120327091223.htm>.
American Chemical Society (ACS). (2012, March 27). New plastics 'bleed' when cut or scratched -- and then heal like human skin. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/03/120327091223.htm
American Chemical Society (ACS). "New plastics 'bleed' when cut or scratched -- and then heal like human skin." ScienceDaily. www.sciencedaily.com/releases/2012/03/120327091223.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins