Featured Research

from universities, journals, and other organizations

Wave character of individual molecules revealed

Date:
March 28, 2012
Source:
Karlsruhe Institute of Technology
Summary:
Quantum theory describes the world of atoms very precisely. Still, it defies our macroscopic conception of the everyday world due to its many anti-intuitive predictions. The wave-particle dualism probably is the best known example and means that matter may spread and interfere like waves. Now, scientists have recorded the interference process of individual molecules. "Seeing how the interference pattern develops with every light spot, molecule after molecule, and how a basic principle of quantum mechanics is visualized enhances our understanding of the atomic world," explains one of the researchers.

These are selected frames of a movie showing the buildup of a quantum interference pattern from single phthalocyanine molecules.
Credit: Image credits: University of Vienna/Juffmann et al. (Nature Nanotechnology 2012)

Quantum theory describes the world of atoms very precisely. Still, it defies our macroscopic conception of the everyday world due to its many anti-intuitive predictions. The wave-particle dualism probably is the best known example and means that matter may spread and interfere like waves. Now, an international team of researchers has recorded the interference process of individual molecules.

The recordings were published by the journal Nature Nanotechnology online.

"Seeing how the interference pattern develops with every light spot, molecule after molecule, and how a basic principle of quantum me-chanics is visualized enhances our understanding of the atomic world," explains Professor Marcel Mayor, who conducts research and teaches at Karlsruhe Institute of Technology and the University of Basel.

For the experiment performed in cooperation with colleagues from the universities of Vienna and Tel Aviv, Mayor synthesized fluores-cent phtalocyanin molecules having an atomic mass of up to 1298 AMU and consisting of up to 114 atoms. Then, the molecules were accelerated, sent as a slow beam through an optical grating, and deposited on the entrance vacuum window, where they were excited to fluoresce by a laser. For a period of 90 minutes, a fluorescence microscope observed the build-up of the interference pattern. Its setup has a sufficient sensitivity to exactly locate every individual molecule on the window with a precision of about 10 nanometers.

In the future, the setup might be used to study the so-called van-der-Waals interaction between molecules in the beam and those in the grating, which is reflected rather sensitively by the interference pattern. Researchers are also interested in finding out from which size and under which conditions particles behave quantum mechanically or classically, i.e. in the so-called decoherence. These findings may be the basis for novel applications, such as quantum computers. "But the many insights given by this experiment into the quantum world and its boundaries already are of high value," Mayor agrees with many experts, among others Bum Suk Zhao and Wieland Schöllkopf from the Fritz Haber Institute, Berlin, who evaluate the experiment in the accompanying comment article in the same journal.


Story Source:

The above story is based on materials provided by Karlsruhe Institute of Technology. Note: Materials may be edited for content and length.


Journal References:

  1. Thomas Juffmann, Adriana Milic, Michael Müllneritsch, Peter Asenbaum, Alexander Tsukernik, Jens Tüxen, Marcel Mayor, Ori Cheshnovsky, Markus Arndt. Real-time single-molecule imaging of quantum interference. Nature Nanotechnology, 2012; DOI: 10.1038/NNANO.2012.34
  2. Bum Suk Zhao, Wieland Schöllkopf. Fundamental physics: Molecules star in quantum movie. Nature Nanotechnology, 2012; DOI: 10.1038/nnano.2012.44

Cite This Page:

Karlsruhe Institute of Technology. "Wave character of individual molecules revealed." ScienceDaily. ScienceDaily, 28 March 2012. <www.sciencedaily.com/releases/2012/03/120328090828.htm>.
Karlsruhe Institute of Technology. (2012, March 28). Wave character of individual molecules revealed. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/03/120328090828.htm
Karlsruhe Institute of Technology. "Wave character of individual molecules revealed." ScienceDaily. www.sciencedaily.com/releases/2012/03/120328090828.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) — The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Single Molecules in a Quantum Movie

Mar. 25, 2012 — The quantum physics of massive particles has intrigued physicists for more than 80 years, since it predicts that even complex particles can exhibit wave-like behavior – in conflict with our ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins