Featured Research

from universities, journals, and other organizations

Former pro pitcher now keeps 'strike zone' in proteins

April 3, 2012
University of Massachusetts Amherst
Perhaps no other biochemist in the world has his own baseball card, but Elih Velázquez-Delgado, who gave up pro ball for science, does. The doctoral student is about to publish his first academic paper on caspase-6, an enzyme that’s causally involved in Alzheimer’s and Huntington’s diseases.

Elih M. Velázquez-Delgado holding his baseball card.
Credit: UMass Amherst

Perhaps no other biochemist in the world has his own baseball card, but University of Massachusetts Amherst doctoral student Elih M. Velázquez-Delgado, who gave up a pitching career for science, does. Now the only stats he cares about are experimental data, because, he says, "I fell in love with the fact that I can see a molecule. I can actually see an enzyme and watch how it functions. That captured me."

Related Articles

A native of Puerto Rico who pitched for five seasons in the minors, the Arizona and California Leagues, for the Oakland A's and San Francisco Giants' organizations, Velázquez-Delgado says his fast ball was hot enough but he lacked the "killer instinct" required to make it in the majors. He reflects, "I may have the ability but not the mindset."

While pursuing an undergraduate degree in chemistry from the Universidad del Turabo in Puerto Rico, Velázquez-Delgado came to UMass Amherst in 2006 as an under-represented minority student summer intern with the help of the Northeast Alliance for Graduate Education and the Professoriate. He says, "I fell in love with what we do here. So I came back after I graduated to pursue a PhD degree."

Now he is working on his doctorate in the chemistry laboratory of Professor Jeanne Hardy and is about to publish his first academic paper with her. They report discoveries about an enzyme that's causally involved in Alzheimer's and Huntington's diseases in the current issue of the journal, Structure.

Though now a biochemistry researcher, Velázquez-Delgado still measures success in baseball terms. "The difference between being a good hitter and a bad one comes down to only 3 hits in 10 at-bats," he explains. "If you bat .300 or miss about 7 of 10 opportunities, you'll get somewhere. But if you bat .200 or miss 8 of 10 at bats, you're not going far."

"In research I feel it's the same. If you can get the same 30 percent success rate you'll be awesome. So not being depressed about the seven misses is a skill. If you work hours and hours, devoting your life to it, you'll shave that edge down until you succeed."

Hardy, his advisor, says Velázquez-Delgado has solved "a very difficult problem" in a remarkably short time. The goal was to use her lab's expertise in X-ray crystallography to find a way to allosterically inhibit, that is block the action of, the disease-related enzyme caspase-6. In practical terms, she points out, "if you can understand how nature inactivates caspase-6, you can perhaps make a drug that uses the same mechanism and find a treatment for the disease."

Caspase-6 is one of a family of enzymes that "chew up" or cut other proteins and are sometimes depicted as miniature Pac-man characters, all mouth, the chemists explain. One technique that has been used to inhibit their disease-causing cuts in biologically important proteins is to target the "mouth" location, figuratively shoving something in to stop it from chewing.

But the biochemists also know that nature uses another technique, exploiting a different site on the enzyme and inhibiting it there through a natural process called phosphorylation. Velázquez-Delgado proposed to use X-ray crystallography to see, with molecular precision, how nature inactivates caspase-6 and perhaps imitate that approach.

"Phosphorylation adds two electrical charges, so most people have assumed that they're critical to the inhibitory action," Hardy explains. "But in fact, in this whole class of enzymes nobody had ever studied how this kind of inhibition works. We suspected it was allosteric, that is not based on the "mouth" or active site, but on the position of an "ear" on the protein, but we had no idea of the molecular mechanism."

Caspases' active sites are composed of four mobile loops that can take a variety of positions. When the protein is phosphorylated at a position outside the active site, one of the four active site loops is forced in the wrong conformation for substrate binding, which means it can't cut substrate and lead to the disease state. Through a series of experiments that Hardy calls "clean and beautiful," Velázquez-Delgado discovered how to induce this non-binding state and reverse it again. His structural detective work suggested that by cutting off just one amino acid, the caspase would again be inhibited even in the phosphorylated state. He did the experiment, and it turned out to be correct.

"He found that of more than 5,000 atoms in the protein, if we delete three of those atoms, we reverse the effect and inhibition by phosphorylation doesn't happen. Those three atoms control this function. It's a completely new way to inhibit caspase-6, and it opens the door to developing a drug that works by the same mechanism," Hardy says.

Story Source:

The above story is based on materials provided by University of Massachusetts Amherst. Note: Materials may be edited for content and length.

Journal Reference:

  1. Elih M. Velázquez-Delgado and Jeanne A. Hardy. Phosphorylation Regulates Assembly of the Caspase-6 Substrate-Binding Groove. Structure, 2012 DOI: 10.1016/j.str.2012.02.003

Cite This Page:

University of Massachusetts Amherst. "Former pro pitcher now keeps 'strike zone' in proteins." ScienceDaily. ScienceDaily, 3 April 2012. <www.sciencedaily.com/releases/2012/04/120403124246.htm>.
University of Massachusetts Amherst. (2012, April 3). Former pro pitcher now keeps 'strike zone' in proteins. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2012/04/120403124246.htm
University of Massachusetts Amherst. "Former pro pitcher now keeps 'strike zone' in proteins." ScienceDaily. www.sciencedaily.com/releases/2012/04/120403124246.htm (accessed April 18, 2015).

Share This

More From ScienceDaily

More Mind & Brain News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) — Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) — Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) — Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com
Common Pain Reliever Might Dull Your Emotions

Common Pain Reliever Might Dull Your Emotions

Newsy (Apr. 16, 2015) — Each week, millions of Americans take acetaminophen to dull minor aches and pains. Now researchers say it might blunt life&apos;s highs and lows, too. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins