Featured Research

from universities, journals, and other organizations

New insights into the machinery for protein degradation

Date:
April 4, 2012
Source:
Max Planck Institute of Biochemistry
Summary:
Uncontrolled or inaccurate degradation of cellular proteins can lead to diseases like cancer or Alzheimer’s disease. Scientists have now uncovered the structure and the operating mechanism of an important component of the human cellular degradation machinery, tripeptidyl peptidase II (TPPII).

3D-model of the active human TPPII-complex.
Credit: Graphic: Beate Rockel/Copyright: MPI of Biochemistry

Uncontrolled or inaccurate degradation of cellular proteins can lead to diseases like cancer or Alzheimer’s disease. Scientists of the Max Planck Institute of Biochemistry (MPIB) in Martinsried near Munich, Germany, have now uncovered the structure and the operating mechanism of an important component of the human cellular degradation machinery, tripeptidyl peptidase II (TPPII).

Related Articles


“Decoding the structure of TPPII is a crucial milestone towards understanding the complex activation and control of protein degradation”, says Beate Rockel, scientist at the MPIB.

The results of the study have now been published in the journal Structure.

Proteins, the molecular building blocks and machines of the cell, are composed of long chains of amino acids. When such a chain has to be degraded, it is first unfolded and then cleaved into shorter pieces, so-called peptides. Tripeptidyl peptidase II (TPPII), which was analyzed by scientists in the department of MPIB director Wolfgang Baumeister, is one of the factors that take over further degradation. It chops the peptides into even smaller bits which, after some additional steps, can be recycled for the assembly of new proteins. TPPII is a large complex consisting of 32 to 40 identical subunits, which are inactive on their own. The complex becomes functional, when the subunits join into two strands twisted around each other. The complex is approximately 100 times larger than most other protein-degrading enzymes. “TPPII is a real giant amongst cellular proteins”, says PhD student Anne-Marie Schönegge. “Solving the structure of such a colossus is a difficult task.”

Bit by Bit towards the Complete Structure

The researchers of the MPIB combined different methods of structural biology and models to determine the structure and operating mechanism of TPPII in detail. In collaboration with scientists from the Lawrence Berkeley National Laboratory in Berkeley, they had successfully solved the atomic structure of TPPII-subunits of the fruit fly by X-ray-crystallography. In a subsequent step, this structure served as the basis to calculate a model of human TPPII-subunits.

Using cryoelectron microscopy and single-particle reconstruction, the scientists were able to determine the structure of complete and active TPPII-complexes of the fruit fly and humans – but only at medium resolution. By combining the structure of the complete complexes with the more detailed atomic models of individual subunits, the co-workers of the research department “Molecular Structural Biology” could now solve the detailed structural organization of human TPPII: the subunits enclose a cavity system which traverses the whole TPPII complex and harbors the catalytic sites.

By fitting the structures of the inactive subunits into the structure of the active complex, the scientists pinpointed regions that are supposed to undergo changes upon activation of TPPII. These regions include the active site and the entrances into the cavity-system inside the complex. Beate Rockel also hopes for other benefits out of this work: “Insights into the TPPII structure could contribute to the development of new drugs in the future, since there are indications that TPPII may be involved in diseases such as muscle wasting, adiposis and cancer.”


Story Source:

The above story is based on materials provided by Max Planck Institute of Biochemistry. Note: Materials may be edited for content and length.


Journal References:

  1. Crystal K Chuang, Beate Rockel, Gönül Seyit, Peter J Walian, Anne-Marie Schönegge, Jürgen Peters, Petrus H Zwart, Wolfgang Baumeister, Bing K Jap. Hybrid molecular structure of the giant protease tripeptidyl peptidase II. Nature Structural & Molecular Biology, 2010; 17 (8): 990 DOI: 10.1038/nsmb.1870
  2. Anne-Marie Schönegge, Elizabeth Villa, Friedrich Förster, Reiner Hegerl, Jürgen Peters, Wolfgang Baumeister, Beate Rockel. The Structure of Human Tripeptidyl Peptidase II as Determined by a Hybrid Approach. Structure, 2012; 20 (4): 593 DOI: 10.1016/j.str.2012.01.025

Cite This Page:

Max Planck Institute of Biochemistry. "New insights into the machinery for protein degradation." ScienceDaily. ScienceDaily, 4 April 2012. <www.sciencedaily.com/releases/2012/04/120404102144.htm>.
Max Planck Institute of Biochemistry. (2012, April 4). New insights into the machinery for protein degradation. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/04/120404102144.htm
Max Planck Institute of Biochemistry. "New insights into the machinery for protein degradation." ScienceDaily. www.sciencedaily.com/releases/2012/04/120404102144.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins