Featured Research

from universities, journals, and other organizations

Breakthrough in IOP regulation in fight against glaucoma

Date:
April 5, 2012
Source:
Bascom Palmer Eye Institute
Summary:
Medical researchers have gained new insight regarding the regulation of intraocular pressure (IOP) in glaucoma -- an irreversible blinding disease that causes progressive visual impairment due to optic nerve damage and is the leading cause of blindness worldwide.

A six-year collaboration between two faculty members of Bascom Palmer Eye Institute of the University of Miami Miller School of Medicine has yielded new insight regarding the regulation of intraocular pressure (IOP) in glaucoma -- an irreversible blinding disease that causes progressive visual impairment due to optic nerve damage and is the leading cause of blindness worldwide.

Related Articles


The findings are published in the April 4, 2012 issue of PLoS ONE, an open-access peer-reviewed scientific journal, produced by the Public Library of Science.

The key finding by associate professors of ophthalmology Richard K. Lee, M.D., Ph.D., and Sanjoy Bhattacharya, M. Tech., Ph.D., validates their hypothesis that the response of aqueous humor (fluid produced in the eye) to mechanical stimuli at the cellular level (mechanosensing) impacts the regulation of IOP through cells converting that stimuli into chemical activity (mechanotransduction). At the center of this breakthrough lies the protein cochlin, which was discovered in the trabecular meshwork ™ seven years ago using highly sensitive mass spectrometry. The TM refers to tissue located around the base of the cornea that is responsible for filtering and draining aqueous humor from the eye and controlling the IOP. Mass spectrometry is a technique used to identify proteins and to determine their amino acid sequence with great precision and can also ascertain if a protein has been modified. Bascom Palmer Eye Institute is one of only a few eye centers in the nation to have its own mass spectrometer. In fact, two such cutting edge machines are now part of Bascom Palmer Eye Institute's Adrienne Arsht Hope for Vision Retinal Degeneration Research Laboratory, which was established with a $1 million gift from philanthropist Adrienne Arsht, given in 2008.

"With elevated IOP being the primary modifiable risk factor affecting the development and progression of glaucoma," said Lee, "this advancement opens up potential avenues for effective and innovative manipulation of the pathway of aqueous outflow using mechanosensors and mechanotransducers. In turn, it could lead to meaningful intervention strategies." Currently, the primary treatment for glaucoma is to lower IOP through the topical use of medications or eye surgery.

Additionally, Bhattacharya and Lee found that mechanosensing of fluid flow is transduced, or converted into chemical signals, by TREK-1 mechanotransducers on the cell surface. TREK -1 is a protein in the TM, but how it affects IOP was previously unknown. Also missing was an understanding of how cochlin works in mechanosensing. Lee and Bhattacharya's extensive research demonstrated that TREK 1 functions in conjunction with cochlin to regulate IOP.

Furthermore, Lee and Bhattacharya determined that aberrant levels of secreted cochlin disrupt aqueous outflow, thus allowing for a rise in IOP. "Fluctuations of IOP can alter cells of the trabecular meshwork," explained Bhattacharya. "This results in dysfunction of aqueous flow. Presently, there are over 2 million known proteins and 46,000 lipids that can be tested to determine their impact upon IOP."

Bhattacharya and Lee are already working on next steps using advanced mass spectrometry techniques. They hope to uncover endogenous and exogenous molecules that regulate aqueous humor outflow by modulating mechanosensors and mechanotransducers, "The success of this research is based on a strong, ongoing collaboration between Dr. Lee and myself, as well as hard work by postdoctoral fellows and graduate students," summarized Bhattacharya. "We are also fortunate that Bascom Palmer Eye Institute is one of the few vision research centers in the country to have two mass spectrometers. " Both Bhattacharya and Lee agree that without a mass spectrometer, and faculty members who have the expertise to use it to its full potential, this discovery would not have been possible. Funding for their research was received through the National Institutes of Health via two grants totaling $3.4 million.

Mass spectrometers are currently being used by other researchers at Bascom Palmer to identify mechanistic aspects of retinal degeneration and for unraveling mechanistic details of glaucoma pathology. "We continually learn from one another how mass spectrometry can lead to more exciting discoveries," said Bhattacharya. "It is a very valuable tool in the work to combat eye diseases."


Story Source:

The above story is based on materials provided by Bascom Palmer Eye Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Manik Goel, Adam E. Sienkiewicz, Renata Picciani, Jianhua Wang, Richard K. Lee, Sanjoy K. Bhattacharya. Cochlin, Intraocular Pressure Regulation and Mechanosensing. PLoS ONE, 2012; 7 (4): e34309 DOI: 10.1371/journal.pone.0034309

Cite This Page:

Bascom Palmer Eye Institute. "Breakthrough in IOP regulation in fight against glaucoma." ScienceDaily. ScienceDaily, 5 April 2012. <www.sciencedaily.com/releases/2012/04/120405131542.htm>.
Bascom Palmer Eye Institute. (2012, April 5). Breakthrough in IOP regulation in fight against glaucoma. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2012/04/120405131542.htm
Bascom Palmer Eye Institute. "Breakthrough in IOP regulation in fight against glaucoma." ScienceDaily. www.sciencedaily.com/releases/2012/04/120405131542.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins