Featured Research

from universities, journals, and other organizations

Skin and umbilical cord cells turned directly into nerve cells

Date:
April 11, 2012
Source:
Universität Bonn
Summary:
Until recently, the production of pluripotent "multipurpose" stem cells from skin cells was considered to be the ultimate new development. In the meantime, it has become possible to directly convert cells of the body into one another -- without the time-consuming detour via a pluripotent intermediate stage. However, this method has so far been rather inefficient. Scientists have now developed the method to the point that it can be used for biomedical applications.

Nerve cells made from skin cells: The cells have been dyed green and red.
Credit: Julia Ladewig/Uni Bonn

Until recently, the production of pluripotent "multipurpose" stem cells from skin cells was considered to be the ultimate new development. In the meantime, it has become possible to directly convert cells of the body into one another -- without the time-consuming detour via a pluripotent intermediate stage. However, this method has so far been rather inefficient. Scientists from the Bonn Institute of Reconstructive Neurobiology (Director: Prof. Dr. Oliver Brüstle) have now developed the method to the point that it can be used for biomedical applications.

The scientists are presenting their results in the journal Nature Methods.

There was much excitement surrounding cell reprogramming with the breakthrough of Shinya Yamanaka. In 2006, the Japanese scientist was able to reprogram skin cells for the first time with the aid of a few control factors into so-called induced pluripotent stem cells (iPS cells) -- "multipurpose" cells from which all body cells can in principle be produced. In 2010, Marius Wernig, a former postdoctoral researcher with Prof. Brüstle and meanwhile the director of the institute at Stanford University in California, developed the idea further: Using only three so-called transcription factors, his team was able to perform direct transformation of skin cells into so-called induced neurons (iN). However, the method has so far been rather inefficient: Only a small percentage of the skin cells were converted into the desired nerve cells.

Researchers are increasing yields during transformation of cells

For the scientists at the LIFE & BRAIN Center at the University of Bonn, that was not enough. They are interested in the biomedical utilization of artificially produced human nerve cells for disease research, cell replacement, and the development of active substances. One concept seemed likely: Why not use low-molecular active substances -- so-called small molecules -- to optimize the process? Julia Ladewig, post-doctoral researcher and lead author of the study, began using such active substances to influence several signaling pathways important for cell development.

By blocking the so-called SMAD signaling pathway and inhibiting glycogen synthase kinase 3 beta (GSK3ß), they increased the transformational efficiency by several times -- and were thus able to even simplify the means of extraction. Using only two instead of previously three transcription factors and three active substances, the Bonn researchers were able to convert a majority of the skin cells into neurons. In the end, their cell cultures contained up to more than 80% human neurons. And since the cells divide even further during the conversion process, the actual efficiency is even higher.

Two nerve cells are produced from one skin cell

"We can obtain up to more than 200,000 nerve cells converted in this way from 100,000 skin cells," says Julia Ladewig. In order to find the right combination of active substances, the Bonn scientists are focusing on signaling pathways which are especially important for cell specialization. "The SMAD signaling pathway and also GSK3ß were suspected of inhibiting the conversion of connective tissue cells and pluripotent stem cells into neural cells. The obvious step was to block both of them using corresponding active substances," says Philipp Koch, team leader and senior author responsible for the study, together with Prof. Brüstle. The results were intriguing: "We were able to demonstrate how the genes typical for skin fibroblast were gradually down-regulated and nerve-cell-specific genes were activated during the cell transformation. In addition, the nerve cells thus obtained were functionally active, which also makes them interesting as a source for cell replacement," says Ladewig.

Scientists are now transferring the method to other types of cells

The Bonn scientists have already transferred the method to other types of cells such as, for example, umbilical cord cells. Brüstle clearly foresees the next steps: "First of all, we want to use nerve cells obtained in this way for disease and active substance research. The long-term goal will be to convert cells directly in the body into nerve cells."


Story Source:

The above story is based on materials provided by Universität Bonn. Note: Materials may be edited for content and length.


Journal Reference:

  1. Julia Ladewig, Jerome Mertens, Jaideep Kesavan, Jonas Doerr, Daniel Poppe, Finnja Glaue, Stefan Herms, Peter Wernet, Gesine Kögler, Franz-Josef Müller, Philipp Koch, Oliver Brüstle. Small molecules enable highly efficient neuronal conversion of human fibroblasts. Nature Methods, 2012; DOI: 10.1038/nmeth.1972

Cite This Page:

Universität Bonn. "Skin and umbilical cord cells turned directly into nerve cells." ScienceDaily. ScienceDaily, 11 April 2012. <www.sciencedaily.com/releases/2012/04/120411084044.htm>.
Universität Bonn. (2012, April 11). Skin and umbilical cord cells turned directly into nerve cells. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/04/120411084044.htm
Universität Bonn. "Skin and umbilical cord cells turned directly into nerve cells." ScienceDaily. www.sciencedaily.com/releases/2012/04/120411084044.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) — President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) — A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) — A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins