Featured Research

from universities, journals, and other organizations

Study on extrasolar planet orbits suggests that planetary systems like our solar system is the norm

Date:
April 11, 2012
Source:
Centro de Astrofísica da Universidade do Porto
Summary:
Orbits of other planetary systems are aligned, like in a disk, just like in our own solar system, according to a new analysis.

Exoplanets with non co-planar orbits.
Credit: Ricardo Reis (CAUP)

Recently, the HARPS spectrograph and the Kepler satellite made a census of the planetary population around stars like our own, revealing a bounty of planetary systems. A follow-up study led by members of the EXOEarths team (Centro de Astrofísica da Universidade do Porto -- CAUP), in collaboration with Geneva University, did a joint analysis of the data which showed that the planetary orbits in a system are strongly aligned, like in a disk, just as we have in our own solar system.

Related Articles


The two most effective methods for detecting extrasolar planets are the radial-velocity method and the transit method. The radial-velocity method detects planets through the reflex motion induced by the planet on the star's velocity on the radial direction (hence the name). This velocity variation is detected through the Doppler effect, the same that leads to a pitch change in the sound of an traveling train. On the other hand, a planetary transit is akin to a mini-eclipse. As a planet travels around the star, its orbit can locate it in front of the star, and the light we collect from the star is reduced because the planet blocks part of it (even though we cannot image the planet).

There is a significant difference when these two methods are applied to planetary system. A planet can be detected in radial velocity even when the orbit's plane direction is tilted relative to the line of sight, and the same is true for a system of planets. However, for a planet to transit, the plane of its orbit has to be almost perfectly aligned with our line-of-sight, and the same is true for a system of two (or more planets) to transit. This means that if several planets in a system transit they necessarily form a very small angle between them.

Researchers simulated planetary systems with frequencies as reported by HARPS survey (that detects basically all the systems, independently of their inclination angle), and attributed to them different relative inclinations. The frequency of transiting systems was calculated and compared with the values reported by Kepler. Researchers showed that a match can be obtained for double-transiting systems only if they are very strongly aligned with a common plane (the system's plane). This alignment has to be close to 1 degree, and only reaches 5 degrees on very extreme cases (extreme on the sense of the assumption on how a planetary mass translates to a radius).

These results show consistently that the planets' orbits are predominantly aligned, reinforcing the idea that planets form on a disk and suggesting for the first time that violent encounters between planets are not frequent. This provides a very important clue about the formation and evolution of exoplanets, a domain in which several open questions remain. This study shows that the high degree of alignment of our system might well be the norm for planetary systems.

Pedro Figueira (CAUP), the article's first author said: "These results show us that the way our solar system formed must be common. Its structure is the same as the other planetary systems we studied, with all planets orbiting roughly in the same plane."


Story Source:

The above story is based on materials provided by Centro de Astrofísica da Universidade do Porto. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Figueira, M. Marmier, G. Boué, C. Lovis, N. C. Santos, M. Montalto, S. Udry, F. Pepe, M. Mayor. Comparing HARPS and Kepler surveys: On the alignment of multiple-planet systems. Astronomy & Astrophysics, 2012 (accepted)

Cite This Page:

Centro de Astrofísica da Universidade do Porto. "Study on extrasolar planet orbits suggests that planetary systems like our solar system is the norm." ScienceDaily. ScienceDaily, 11 April 2012. <www.sciencedaily.com/releases/2012/04/120411084050.htm>.
Centro de Astrofísica da Universidade do Porto. (2012, April 11). Study on extrasolar planet orbits suggests that planetary systems like our solar system is the norm. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2012/04/120411084050.htm
Centro de Astrofísica da Universidade do Porto. "Study on extrasolar planet orbits suggests that planetary systems like our solar system is the norm." ScienceDaily. www.sciencedaily.com/releases/2012/04/120411084050.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Space & Time News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) — Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) — More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) — NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) — NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins