Featured Research

from universities, journals, and other organizations

Novel coding technique holds promise for next-generation computers

Date:
April 12, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
A pioneering error correction technique holds promise for the development of next-generation computers.

A pioneering error correction technique developed at the A*STAR Data Storage Institute holds promise for the development of next-generation computers.

Related Articles


Over the past decade, tablet computers and smartphones have taken the world by storm, in no small part due to the way in which they can be switched on almost instantly. The race has been on to develop computers that can similarly be up and running in a matter of moments. Such advances are currently hindered due to the fact that computers need to boot up, as silicon memory chips cannot hold information if the power is turned off. In order to retain information even if the power is turned off, the memory needs to be non-volatile, as is the type of memory commonly found in memory sticks. However, existing memory technologies are expensive, difficult to scale up and often cannot keep up with the demands of current desktop computers. A key contender for future non-volatile memories is the so-called spin-torque transfer magnetic random access memory (STT-MRAM).

For this reason, Cai and colleagues developed a new design of the memory sensing and detection architecture that is based on soft decision decoding. The soft decision decoding goes beyond the strict limitation of 0s and 1s of the bits and also considers the probability of each detected bit being a '0' or '1'. The use of such additional information leads to significantly fewer decoding errors than the hard decision decoding that does not take such probabilities into account.

Improving performance across the board

An important component of the new design is the soft-output channel detector, which measures the probabilities of the bits read out being set as '0' and '1', and feeds this information into the soft decision decoding process of the particular STT-MRAM error correction code utilized here -- the so-called low-density parity-check (LDPC) codes.

The improved design also includes a new quantization scheme for STT-MRAM. This is the process that converts the analogue signal into the digital signal. To ensure a high-quality conversion, the analogue information is best encoded into a large number of quantization bits, which greatly increases computational efforts. However, the enhanced error correction procedure means that fewer quantization bits can be used. This not only simplifies the management of such devices but also maximizes the number of information bits that can be stored in a STT-MRAM cell.

Remarkably, Cai and her colleagues have successfully shown that the new scheme achieves a 20% increase in the tolerance towards variations in electrical resistance of the devices. Such relaxed demands greatly ease the manufacturing process of the devices and also will be important when it comes to further reducing STT-MRAM device sizes, as Alexopoulos comments: "DSI's design of LDPC coding with soft decision decoding for STT-MRAM has a better error correction capability, paving the way for the industry to reduce the cell feature size of future STT-MRAM devices."

The new error correction approach developed by Cai may well keep STT-MRAM in the running when it comes to replacing flash drives in computers, and lengthy computer boot-up times could soon be a thing of the past. One of the next challenges for the non-volatile memory coding team will be to focus on further scaling of STT-MRAM. "We will further investigate how ECCs with soft decoding can help to improve the various performance of STT-MRAM, and eventually contribute to the scaling of STT-MRAM," says Cai. "We will also design different ECCs for STT-MRAM with different applications."


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Novel coding technique holds promise for next-generation computers." ScienceDaily. ScienceDaily, 12 April 2012. <www.sciencedaily.com/releases/2012/04/120412105054.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, April 12). Novel coding technique holds promise for next-generation computers. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2012/04/120412105054.htm
The Agency for Science, Technology and Research (A*STAR). "Novel coding technique holds promise for next-generation computers." ScienceDaily. www.sciencedaily.com/releases/2012/04/120412105054.htm (accessed October 31, 2014).

Share This



More Computers & Math News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Protests Stall Hungary's Internet Tax

Protests Stall Hungary's Internet Tax

Reuters - Business Video Online (Oct. 31, 2014) Hungary will shelve plans to introduce a tax on internet data traffic that has generated big protests over the past week. But as Amy Pollock reports the controversial issue hasn’t gone away entirely. Video provided by Reuters
Powered by NewsLook.com
Samsung's Incredible Shrinking Smartphone Profits

Samsung's Incredible Shrinking Smartphone Profits

Reuters - Business Video Online (Oct. 30, 2014) The world's top mobile maker is under severe pressure, delivering a 60 percent drop in Q3 profit as its handset business struggles. Turning it around may not prove easy, says Reuters' Jon Gordon. Video provided by Reuters
Powered by NewsLook.com
Ban On Wearable Cameras In Movie Theaters Surprises No One

Ban On Wearable Cameras In Movie Theaters Surprises No One

Newsy (Oct. 30, 2014) The Motion Picture Association of America and the National Association of Theatre Owners now prohibit wearable cameras such as Google Glass. Video provided by Newsy
Powered by NewsLook.com
Spain's New 'Google Tax' Makes News Feeds Pay For Links

Spain's New 'Google Tax' Makes News Feeds Pay For Links

Newsy (Oct. 30, 2014) Spanish lawmakers have passed new IP rules requiring aggregators to pay for linking to news sites, following a broader trend across the E.U. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins