Science News
from research organizations

New breast cancer genes identified: Basis of next-generation treatments?

Date:
April 18, 2012
Source:
University of British Columbia
Summary:
Scientists have identified new breast cancer genes that could change the way the disease is diagnosed and form the basis of next-generation treatments.
Share:
       
FULL STORY

Scientists at the BC Cancer Agency and University of British Columbia have identified new breast cancer genes that could change the way the disease is diagnosed and form the basis of next-generation treatments.

Researchers have reclassified the disease into 10 completely new categories based on the genetic fingerprint of a tumour. Many of these genes could offer much-needed insight into breast cancer biology, allowing doctors to predict whether a tumour will respond to a particular treatment. Whether the tumour is likely to spread to other parts of the body or if it is likely to return following treatment.

The study, published online in the journal Nature, is the largest global study of breast cancer tissue ever performed and the culmination of decades of research into the disease.

In the future, this information could be used by doctors to better tailor treatment to the individual patient.

The team at the BC Cancer Agency, in collaboration with Cancer Research UK's Cambridge Research Institute and Manitoba Institute of Cell Biology at University of Manitoba, analyzed the DNA and RNA of 2,000 tumour samples taken from women diagnosed with breast cancer between five and 10 years ago. The sheer number of tumours mapped allowed researchers to spot new patterns in the data.

Study milestones include:

  • Classified breast cancer into 10 subtypes grouped by common genetic features, which correlate with survival. This new classification could change the way drugs are tailored to treat women with breast cancer.
  • Discovered several completely new genes that had never before been linked to breast cancer. These genes that drive the disease are all targets for new drugs that may be developed. This information will be available to scientists worldwide to boost drug discovery and development.
  • Revealed the relationship between these genes and known cell signaling pathways -- networks that control cell growth and division. This could pinpoint how these gene faults cause cancer, by disrupting important cell processes.

This is the second major breakthrough announced by BC Cancer Agency scientists in as many weeks. On April 4, a team led by Dr. Sam Aparicio celebrated the decoding of the genetic makeup of the most-deadly of breast cancers, triple-negative breast cancer, which until then was defined by what it was missing, not what it was. Similar to that announcement, this new discovery identifies genes that were previously unknown to be linked to breast cancer and makes it clear that breast cancer is an umbrella term for what really is a number of unique diseases.

While the research is unlikely to benefit women who currently have breast cancer, it substantially advances how scientists approach further research and clinical trials by providing them with a springboard to develop new treatment options and drugs targeted to specific genes.


Story Source:

The above post is reprinted from materials provided by University of British Columbia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sohrab P. Shah, Andrew Roth, Rodrigo Goya, Arusha Oloumi, Gavin Ha, Yongjun Zhao, Gulisa Turashvili, Jiarui Ding, Kane Tse, Gholamreza Haffari, Ali Bashashati, Leah M. Prentice, Jaswinder Khattra, Angela Burleigh, Damian Yap, Virginie Bernard, Andrew McPherson, Karey Shumansky, Anamaria Crisan, Ryan Giuliany, Alireza Heravi-Moussavi, Jamie Rosner, Daniel Lai, Inanc Birol, Richard Varhol, Angela Tam, Noreen Dhalla, Thomas Zeng, Kevin Ma, Simon K. Chan, Malachi Griffith, Annie Moradian, S.-W. Grace Cheng, Gregg B. Morin, Peter Watson, Karen Gelmon, Stephen Chia, Suet-Feung Chin, Christina Curtis, Oscar M. Rueda, Paul D. Pharoah, Sambasivarao Damaraju, John Mackey, Kelly Hoon, Timothy Harkins, Vasisht Tadigotla, Mahvash Sigaroudinia, Philippe Gascard, Thea Tlsty, Joseph F. Costello, Irmtraud M. Meyer, Connie J. Eaves, Wyeth W. Wasserman, Steven Jones, David Huntsman, Martin Hirst, Carlos Caldas, Marco A. Marra, Samuel Aparicio. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 2012; DOI: 10.1038/nature10933

Cite This Page:

University of British Columbia. "New breast cancer genes identified: Basis of next-generation treatments?." ScienceDaily. ScienceDaily, 18 April 2012. <www.sciencedaily.com/releases/2012/04/120418135049.htm>.
University of British Columbia. (2012, April 18). New breast cancer genes identified: Basis of next-generation treatments?. ScienceDaily. Retrieved August 4, 2015 from www.sciencedaily.com/releases/2012/04/120418135049.htm
University of British Columbia. "New breast cancer genes identified: Basis of next-generation treatments?." ScienceDaily. www.sciencedaily.com/releases/2012/04/120418135049.htm (accessed August 4, 2015).

Share This Page: