Featured Research

from universities, journals, and other organizations

Learning mechanism of the adult brain revealed

Date:
April 26, 2012
Source:
Netherlands Institute for Neuroscience
Summary:
They say you can’t teach an old dog new tricks. Fortunately, this is not always true. Researchers have now discovered how the adult brain can adapt to new situations. Their study may be significant in developing treatments of neurodevelopmental disorders.

Two inhibitory synapses (yellow) disappear from the process of a nerve-cell (red) during learning.
Credit: Image courtesy of Netherlands Institute for Neuroscience

They say you can't teach an old dog new tricks. Fortunately, this is not always true. Researchers at the Netherlands Institute for Neuroscience (NIN-KNAW) have now discovered how the adult brain can adapt to new situations. The Dutch researchers' findings are published on April 25 in the journal Neuron. Their study may be significant in developing treatments of neurodevelopmental disorders.

Ability to learn

Our brain processes information in complex networks of nerve cells. The cells communicate and excite one another through special connections, called synapses. Young brains are capable of forming many new synapses, and they are consequently better at learning new things. That is why we acquire vital skills -- walking, talking, hearing and seeing -- early on in life. The adult brain stabilises the synapses so that we can use what we have learned in childhood for the rest of our lives.

Disappearing inhibitors

Earlier research found that approximately one fifth of the synapses in the brain inhibit rather than excite other nerve-cell activity. Neuroscientists have now shown that many of these inhibitory synapses disappear if the adult brain is forced to learn new skills. They reached this conclusion by labelling inhibitory synapses in mouse brains with fluorescent proteins and then tracking them for several weeks using a specialised microscope. They then closed one of the mice's eyes temporarily to accustom them to seeing through just one eye. After a few days, the area of the brain that processes information from both eyes began to respond more actively to the open eye. At the same time, many of the inhibitory synapses disappeared and were later replaced by new synapses.

Regulating the information network

Inhibitory synapses are vital for the way networks function in the brain. "Think of the excitatory synapses as a road network, with traffic being guided from A to B, and the inhibitory synapses as the matrix signs that regulate the traffic," explains research leader Christiaan Levelt. "The inhibitory synapses ensure an efficient flow of traffic in the brain. If they don't, the system becomes overloaded, for example as in epilepsy; if they constantly indicate a speed of 20 kilometres an hour, then everything will grind to a halt, for example when an anaesthetic is administered. If you can move the signs to different locations, you can bring about major changes in traffic flows without having to entirely reroute the road network."

Hope

Inhibitory synapses play a hugely influential role on learning in the young brain. People who have neurodevelopmental disorders -- for example epilepsy, but also autism and schizophrenia -- may have trouble forming inhibitory synapses. The discovery that the adult brain is still capable of pruning or forming these synapses offers hope that pharmacological or genetic intervention can be used to enhance or manage this process. This could lead to important guideposts for treating the above-mentioned neurological disorders, but also repairing damaged brain tissue.


Story Source:

The above story is based on materials provided by Netherlands Institute for Neuroscience. Note: Materials may be edited for content and length.


Journal Reference:

  1. Daniëlle van Versendaal, Rajeev Rajendran, M. Hadi Saiepour, Jan Klooster, Laura Smit-Rigter, Jean-Pierre Sommeijer, Chris I. De Zeeuw, Sonja B. Hofer, J. Alexander Heimel, Christiaan N. Levelt. Elimination of Inhibitory Synapses Is a Major Component of Adult Ocular Dominance Plasticity. Neuron, 2012; 74 (2): 374 DOI: 10.1016/j.neuron.2012.03.015

Cite This Page:

Netherlands Institute for Neuroscience. "Learning mechanism of the adult brain revealed." ScienceDaily. ScienceDaily, 26 April 2012. <www.sciencedaily.com/releases/2012/04/120426104851.htm>.
Netherlands Institute for Neuroscience. (2012, April 26). Learning mechanism of the adult brain revealed. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2012/04/120426104851.htm
Netherlands Institute for Neuroscience. "Learning mechanism of the adult brain revealed." ScienceDaily. www.sciencedaily.com/releases/2012/04/120426104851.htm (accessed April 17, 2014).

Share This



More Mind & Brain News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) — Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Couples Who Sleep Less Than An Inch Apart Might Be Happiest

Couples Who Sleep Less Than An Inch Apart Might Be Happiest

Newsy (Apr. 16, 2014) — A new study by British researchers suggests couples' sleeping positions might reflect their happiness. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) — A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins