Featured Research

from universities, journals, and other organizations

Scar tissue turned into heart muscle without using stem cells

Date:
April 26, 2012
Source:
Duke University Medical Center
Summary:
Scientists have shown the ability to turn scar tissue that forms after a heart attack into heart muscle cells using a new process that eliminates the need for stem cell transplant.

Scientists at Duke University Medical Center have shown the ability to turn scar tissue that forms after a heart attack into heart muscle cells using a new process that eliminates the need for stem cell transplant. The research was performed in mice.
Credit: Tran-Photography / Fotolia

Scientists at Duke University Medical Center have shown the ability to turn scar tissue that forms after a heart attack into heart muscle cells using a new process that eliminates the need for stem cell transplant.

The study, published online April 26 in the journal Circulation Research, used molecules called microRNAs to trigger the cardiac tissue conversion in a lab dish and, for the first time, in a living mouse, demonstrating the potential of a simpler process for tissue regeneration.

If additional studies confirm the approach in human cells, it could lead to a new way for treating many of the 23 million people worldwide who suffer heart failure, which is often caused by scar tissue that develops after a heart attack. The approach could also have benefit beyond heart disease.

"This is a significant finding with many therapeutic implications," said Victor J. Dzau, MD, a senior author on the study who is James B. Duke professor of medicine and chancellor of health affairs at Duke University. "If you can do this in the heart, you can do it in the brain, the kidneys, and other tissues. This is a whole new way of regenerating tissue."

To initiate the regeneration, Dzau's team at Duke used microRNAs, which are molecules that serve as master regulators controlling the activity of multiple genes. Tailored in a specific combination, the microRNAs were delivered into scar tissue cells called fibroblasts, which develop after a heart attack and impair the organ's ability to pump blood.

Once deployed, the microRNAs reprogrammed fibroblasts to become cells resembling the cardiomyocytes that make up heart muscle. The Duke team not only proved this concept in the laboratory, but also demonstrated that the cell conversion could occur inside the body of a mouse -- a major requirement for regenerative medicine to become a potential therapy.

"This is one of the exciting things about our study," said Maria Mirotsou, PhD, assistant professor of cardiology at Duke and a senior author of the study. "We were able to achieve this tissue conversion in the heart with these microRNAs, which may be more practical for direct delivery into cells and allow for possible development of therapies without using genetic methods or transplantation of stem cells."

The researchers said using microRNA for tissue regeneration has several potential advantages over genetic methods or transplantation of stem cells, which have been difficult to manage inside the body. Notably, the microRNA process eliminates technical problems such as genetic alterations, while also avoiding the ethical dilemmas posed by stem cells.

"It's an exciting stage for reprogramming science," said Tilanthi M. Jayawardena, PhD, first author of the study. "It's a very young field, and we're all learning what it means to switch a cell's fate. We believe we've uncovered a way for it to be done, and that it has a lot of potential."

The approach will now be tested in larger animals. Dzau said therapies could be developed within a decade if additional studies advance in larger animals and humans.

"We have proven the concept," Dzau said. "This is the very early stage, and we have only shown that is it doable in an animal model. Although that's a very big step, we're not there yet for humans."

In addition to Dzau, Mirotsou and Jayawardena, study authors include: Bakytbek Egemnazarov; Elizabeth A. Finch; Lunan Zhang; Kumar Pandya; J. Alan Payne; Zhiping Zhang; and Paul Rosenberg.

Funding for the study was provided by the National Heart, Lung and Blood Institute; the Edna and Fred L. Mandel Jr. Foundation; the Foundation Leducq; Mirotsou is supported by the American Heart Association National Scientist Development Award; Rosenberg is supported by the NIH.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tilanthi M. Jayawardena, Bakytbek Egemnazarov, Elizabeth A. Finch, Lunan Zhang, J. Alan Payne, Kumar Pandya, Zhiping Zhang, Paul Rosenberg, Maria Mirotsou, and Victor J. Dzau. MicroRNA-Mediated In Vitro and In Vivo Direct Reprogramming of Cardiac Fibroblasts to Cardiomyocytes. Circulation Research, April 26 2012 DOI: 10.1161/CIRCRESAHA.112.269035

Cite This Page:

Duke University Medical Center. "Scar tissue turned into heart muscle without using stem cells." ScienceDaily. ScienceDaily, 26 April 2012. <www.sciencedaily.com/releases/2012/04/120426174110.htm>.
Duke University Medical Center. (2012, April 26). Scar tissue turned into heart muscle without using stem cells. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/04/120426174110.htm
Duke University Medical Center. "Scar tissue turned into heart muscle without using stem cells." ScienceDaily. www.sciencedaily.com/releases/2012/04/120426174110.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins