Featured Research

from universities, journals, and other organizations

A new generation of ultra-small and high-precision lasers emerges

Date:
April 26, 2012
Source:
INRS
Summary:
Ultra fast, robust, stable, and high precision: these are some of the characteristics of a new laser. The ultra-small laser paves the way for a new generation of highly powerful, ultra-stable integrated lasers.

Professor Roberto Morandotti and his team at the INRS Énergie Matériaux Télécommunications Research Centre played a leading role in the design of a versatile new laser.
Credit: Image courtesy of INRS

Ultra fast, robust, stable, and high precision: these are some of the characteristics of a new laser developed by an international research team. This ultra-small laser paves the way for a new generation of highly powerful, ultra-stable integrated lasers. Professor Roberto Morandotti and his team at the INRS Énergie Matériaux Télécommunications Research Centre played a leading role in the design of this versatile laser that recently made the front page of the scientific journal Nature Communications.

Related Articles


"We advanced a new approach to develop a laser that boasts as yet unparalleled stability and precision, allowing us to conduct new experiments and open up new realms of research," said Professor Morandotti, who was elected a fellow by the Optical Society of America and by the International Society for Optics and Photonics (SPIE). "Plus, a multitude of applications may be created in biology, medicine, materials processing, IT, high speed communications, and metrology."

Flexible and effective, this ultra-small laser stands out for its mode of operation. The researchers developed a ring resonator (a key laser key component) that has the unique feature of playing a dual role by acting both as a filter and a non-linear element. This is the first time researchers have successfully integrated a resonator and a micro-ring in the laser component that makes it possible to better control the light source. It is manufactured using a special glass capable of harnessing the nonlinear optical properties central to laser operation.

For the first time, the researchers tested the filter-driven four-wave mixing method, which presents a number of advantages. Notably the method makes it possible to increase the laser's stability and resistance to external disruptions, increase the amplitude of light pulses while reducing their duration, and emit extremely high quality, high-repetition-rate pulses of up to 200 gigahertz or more, while maintaining a very narrow spectral bandwidth.

Working on Professor Roberto Morandotti's team at INRS, researchers Marco Peccianti and Alessia Pasquazi helped design the operating schematics of the new laser and amplifier, and helped build the prototype. Digital simulations were performed by Pasquazi.

This research benefited from the financial support of the Natural Sciences and Engineering Research Council of Canada, Fonds de recherche du Québec -- Nature et technologies (FRQNT), and the Australian Research Council.


Story Source:

The above story is based on materials provided by INRS. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Peccianti, A. Pasquazi, Y. Park, B.E. Little, S.T. Chu, D.J. Moss, R. Morandotti. Demonstration of a stable ultrafast laser based on a nonlinear microcavity. Nature Communications, 2012; 3: 765 DOI: 10.1038/ncomms1762

Cite This Page:

INRS. "A new generation of ultra-small and high-precision lasers emerges." ScienceDaily. ScienceDaily, 26 April 2012. <www.sciencedaily.com/releases/2012/04/120426174113.htm>.
INRS. (2012, April 26). A new generation of ultra-small and high-precision lasers emerges. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2012/04/120426174113.htm
INRS. "A new generation of ultra-small and high-precision lasers emerges." ScienceDaily. www.sciencedaily.com/releases/2012/04/120426174113.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) — Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) — Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) — Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
France's Sauternes Wine Threatened by New Train Line

France's Sauternes Wine Threatened by New Train Line

AFP (Dec. 16, 2014) — Winemakers in southwestern France's Bordeaux are concerned about a proposed high speed train line that could affect the microclimate required for the region's sweet wine. Duration: 01:06 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins