Featured Research

from universities, journals, and other organizations

Garlic compound fights source of food-borne illness better than antibiotics

Date:
May 1, 2012
Source:
Washington State University
Summary:
A compound in garlic is 100 times more effective than two popular antibiotics at fighting the Campylobacter bacterium, one of the most common causes of intestinal illness. The discovery opens the door to new treatments for raw and processed meats and food preparation surfaces.

Researchers at Washington State University have found that a compound in garlic is 100 times more effective than two popular antibiotics at fighting the Campylobacter bacterium, one of the most common causes of intestinal illness.
Credit: © Schlierner / Fotolia

Researchers at Washington State University have found that a compound in garlic is 100 times more effective than two popular antibiotics at fighting the Campylobacter bacterium, one of the most common causes of intestinal illness.

Their work was published recently in the Journal of Antimicrobial Chemotherapy.

The discovery opens the door to new treatments for raw and processed meats and food preparation surfaces.

"This work is very exciting to me because it shows that this compound has the potential to reduce disease-causing bacteria in the environment and in our food supply," said Xiaonan Lu, a postdoctoral researcher and lead author of the paper.

"This is the first step in developing or thinking about new intervention strategies," saif Michael Konkel, a co-author who has been researching Campylobacter jejuni for 25 years.

"Campylobacter is simply the most common bacterial cause of food-borne illness in the United States and probably the world," Konkel said. Some 2.4 million Americans are affected every year, according to the U.S. Centers for Disease Control and Prevention, with symptoms including diarrhea, cramping, abdominal pain and fever.

The bacteria also are responsible for triggering nearly one-third of the cases of a rare paralyzing disorder known as Guillain-Barrι syndrome.

Most infections stem from eating raw or undercooked poultry or foods that have been cross-contaminated via surfaces or utensils used to prepare poultry.

Lu and his colleagues looked at the ability of the garlic-derived compound, diallyl sulfide, to kill the bacterium when it is protected by a slimy biofilm that makes it 1,000 times more resistant to antibiotics than the free floating bacterial cell. They found the compound can easily penetrate the protective biofilm and kill bacterial cells by combining with a sulfur-containing enzyme, subsequently changing the enzyme's function and effectively shutting down cell metabolism.

The researchers found the diallyl sulfide was as effective as 100 times as much of the antibiotics erythromycin and ciprofloxacin and often would work in a fraction of the time.

Two previous works published last year by Lu and WSU colleagues in Applied and Environmental Microbiology and Analytical Chemistry found diallyl sulfide and other organosulfur compounds effectively kill important food-borne pathogens, such as Listeria monocytogenes and Escherichia coli O157:H7.

Konkel cautioned that the recent work is still at the basic stage, well removed from an actual application. While eating garlic is a generally healthy practice, it is unlikely to prevent Campylobacter-related food poisoning.

However, "diallyl sulfide may be useful in reducing the levels of the Campylobacterin the environment and to clean industrial food processing equipment, as the bacterium is found in a biofilm in both settings," he said.

"Diallyl sulfide could make many foods safer to eat," said Barbara Rasco, a co-author on all three recent papers and Lu's advisor for his doctorate in food science. "It can be used to clean food preparation surfaces and as a preservative in packaged foods like potato and pasta salads, coleslaw and deli meats."

"This would not only extend shelf life but it would also reduce the growth of potentially bad bacteria," she said.


Story Source:

The above story is based on materials provided by Washington State University. The original article was written by Eric Sorensen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaonan Lu, Derrick R. Samuelson, Barbara A. Rasco, and Michael E. Konkel. Antimicrobial effect of diallyl sulphide on Campylobacter jejuni biofilms. J. Antimicrob. Chemother., May 1, 2012 DOI: 10.1093/jac/dks138

Cite This Page:

Washington State University. "Garlic compound fights source of food-borne illness better than antibiotics." ScienceDaily. ScienceDaily, 1 May 2012. <www.sciencedaily.com/releases/2012/05/120501134203.htm>.
Washington State University. (2012, May 1). Garlic compound fights source of food-borne illness better than antibiotics. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2012/05/120501134203.htm
Washington State University. "Garlic compound fights source of food-borne illness better than antibiotics." ScienceDaily. www.sciencedaily.com/releases/2012/05/120501134203.htm (accessed August 22, 2014).

Share This




More Plants & Animals News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Endangered Red Wolves Face Uncertain Future

Endangered Red Wolves Face Uncertain Future

AP (Aug. 22, 2014) — A federal judge temporarily banned coyote hunting to save endangered red wolves, but local hunters say that the wolf preservation program does more harm than good. Meanwhile federal officials are reviewing its wolf program in North Carolina. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Farm Resurgence Grows With Younger Crowd

Farm Resurgence Grows With Younger Crowd

AP (Aug. 22, 2014) — New England farms are seeing a surge in younger farm hands as the 'buy local' food movement grows across the country. (Aug. 22) Video provided by AP
Powered by NewsLook.com
Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) — An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Terrifying City-Dwelling Spiders Are Bigger And More Fertile

Newsy (Aug. 21, 2014) — According to a new study, spiders that live in cities are bigger, fatter and multiply faster. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins