Featured Research

from universities, journals, and other organizations

'Smart doorknobs' and gesture-controlled smartphones: Revolutionary technology enables objects to know your touch

Date:
May 3, 2012
Source:
Carnegie Mellon University
Summary:
A doorknob that knows whether to lock or unlock based on how it is grasped, a smartphone that silences itself if the user holds a finger to her lips and a chair that adjusts room lighting based on recognizing if a user is reclining or leaning forward are among the many possible applications of Touché, a new sensing technique.

A doorknob that knows whether to lock or unlock based on how it is grasped, a smartphone that silences itself if the user holds a finger to her lips and a chair that adjusts room lighting based on recognizing if a user is reclining or leaning forward are among the many possible applications of Touché, a new sensing technique just developed.
Credit: Image courtesy of Carnegie Mellon University

A doorknob that knows whether to lock or unlock based on how it is grasped, a smartphone that silences itself if the user holds a finger to her lips and a chair that adjusts room lighting based on recognizing if a user is reclining or leaning forward are among the many possible applications of Touché, a new sensing technique developed by a team at Disney Research, Pittsburgh, and Carnegie Mellon University.

Touché is a form of capacitive touch sensing, the same principle underlying the types of touchscreens used in most smartphones. But instead of sensing electrical signals at a single frequency, like the typical touchscreen, Touché monitors capacitive signals across a broad range of frequencies.

This Swept Frequency Capacitive Sensing (SFCS) makes it possible to not only detect a "touch event," but to recognize complex configurations of the hand or body that is doing the touching. An object thus could sense how it is being touched, or might sense the body configuration of the person doing the touching.

SFCS is robust and can enhance everyday objects by using just a single sensing electrode. Sometimes, as in the case of a doorknob or other conductive objects, the object itself can serve as a sensor and no modifications are required. Even the human body or a body of water can be a sensor.

"Signal frequency sweeps have been used for decades in wireless communication, but as far as we know, nobody previously has attempted to apply this technique to touch interaction," said Ivan Poupyrev, senior research scientist at Disney Research, Pittsburgh. "Yet, in our laboratory experiments, we were able to enhance a broad variety of objects with high-fidelity touch sensitivity. When combined with gesture recognition techniques, Touché demonstrated recognition rates approaching 100 percent. That suggests it could immediately be used to create new and exciting ways for people to interact with objects and the world at large."

In addition to Poupyrev, the research team included Chris Harrison, a Ph.D. student in Carnegie Mellon's Human-Computer Interaction Institute, and Munehiko Sato, a Disney intern and a Ph.D. student in engineering at the University of Tokyo. The researchers will present their findings May 7 at CHI 2012, the Conference on Human Factors in Computing Systems, in Austin, Texas, where it has been recognized with a Best Paper Award.

Both Touché and smartphone touchscreens are based on the phenomenon known as capacitive coupling. In a capacitive touchscreen, the surface is coated with a transparent conductor that carries an electrical signal. That signal is altered when a person's finger touches it, providing an alternative path for the electrical charge. By monitoring the change in the signal, the device can determine if a touch occurs.

By monitoring a range of signal frequencies, however, Touché can derive much more information. Different body tissues have different capacitive properties, so monitoring a range of frequencies can detect a number of different paths that the electrical charge takes through the body.

Making sense of all of that SFCS information, however, requires analyzing hundreds of data points. As microprocessors have become steadily faster and less expensive, it now is feasible to use SFCS in touch interfaces, the researchers said.

"Devices keep getting smaller and increasingly are embedded throughout the environment, which has made it necessary for us to find ways to control or interact with them, and that is where Touché could really shine," Harrison said.

Sato said Touché could make computer interfaces as invisible to users as the embedded computers themselves. "This might enable us to one day do away with keyboards, mice and perhaps even conventional touchscreens for many applications," he said.

Among the proof-of-concept applications the researchers have investigated is a smart doorknob. Depending on whether the knob was grasped, touched with one finger or two, or pinched, a door could be programmed to lock or unlock itself, admit a guest, or even leave a reply message, such as "I'll be back in five minutes."

In another proof-of-concept experiment, they showed that SFCS could enhance a traditional touchscreen by sensing not just the fingertip, but the configuration of the rest of the hand. They created the equivalent of a mouse "right click," zoom in/out and copy/paste functions depending on whether the user pinched the phone's screen and back with one finger or two, or used a thumb.

The researchers also were able to monitor body gestures, such as touching fingers, grasping hands and covering ears by having subjects wear electrodes similar to wristwatches on both arms. Such gestures could be used to control a smartphone or other device.

They also showed that a single electrode attached to any water vessel could detect a number of gestures, such as fingertip submerged, hand submerged and hand on bottom. Sensing touch in liquids might be particularly suited to toys, games and food appliances.

More information about Touché can be found at: http://www.disneyresearch.com/research/human_comp_interaction.htm. An explanatory video can be viewed on YouTube.


Story Source:

The above story is based on materials provided by Carnegie Mellon University. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Mellon University. "'Smart doorknobs' and gesture-controlled smartphones: Revolutionary technology enables objects to know your touch." ScienceDaily. ScienceDaily, 3 May 2012. <www.sciencedaily.com/releases/2012/05/120503162023.htm>.
Carnegie Mellon University. (2012, May 3). 'Smart doorknobs' and gesture-controlled smartphones: Revolutionary technology enables objects to know your touch. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2012/05/120503162023.htm
Carnegie Mellon University. "'Smart doorknobs' and gesture-controlled smartphones: Revolutionary technology enables objects to know your touch." ScienceDaily. www.sciencedaily.com/releases/2012/05/120503162023.htm (accessed April 17, 2014).

Share This



More Computers & Math News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

Twitter, Apple Social Data Purchases Likely to Spur More Mergers and Acquisitions

TheStreet (Apr. 16, 2014) — The social media data space is likely to see more mergers and acquisitions following Twitter Inc.'s acquisition of tweet analyzer Gnip Inc. on Tuesday and Apples Inc.'s purchase of Topsy Labs Inc. back in December. One firm in particular, the U.K.'s DataSift Inc., could be on the list of potential buyers. Among other social media startups that could be ripe for picking is Banjo, whose mobile app provides aggregated content by topic and location. Banjo could also be a good fit for Twitter. Video provided by TheStreet
Powered by NewsLook.com
Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

Bitcoin Exchange Mt. Gox to Liquidate After Rebuilding Rejected

TheStreet (Apr. 16, 2014) — Bitcoin exchange Mt. Gox has agreed to liquidate after a Japanese court rejected its plans to rebuild, according to a report by the Wall Street Journal. Mt. Gox filed for bankruptcy protection in February after announcing about 850,000 bitcoins, worth around $454 million at today's rates, may have been stolen by hackers. It has since recovered 200,000 of the missing bitcoins. The court put Mt. Gox's assets under a provisional administrator's control until bankruptcy proceedings begin. Video provided by TheStreet
Powered by NewsLook.com
BlackBerry: The Crash That Launched 1,000 Startups

BlackBerry: The Crash That Launched 1,000 Startups

Reuters - Business Video Online (Apr. 16, 2014) — Tech startups in BlackBerry's hometown of Waterloo, Ontario, are tapping talent from the struggling smartphone company and filling the void left in the region by its meltdown. Reuters correspondent Euan Rocha visits the region that could become Canada's Silicon Valley. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins