Featured Research

from universities, journals, and other organizations

Quantum dots brighten the future of lighting

Date:
May 8, 2012
Source:
Vanderbilt University
Summary:
Researchers have boosted the efficiency of a novel source of white light called quantum dots more than tenfold, making them of potential interest for commercial applications.

Scanning electron microscope image of a quantum dot that shows the individual atoms.
Credit: Rosenthal Lab

With the age of the incandescent light bulb fading rapidly, the holy grail of the lighting industry is to develop a highly efficient form of solid-state lighting that produces high quality white light.

Related Articles


One of the few alternative technologies that produce pure white light is white-light quantum dots. These are ultra-small fluorescent beads of cadmium selenide that can convert the blue light produced by an LED into a warm white light with a spectrum similar to that of incandescent light. (By contrast, compact fluorescent tubes and most white-light LEDs emit a combination of monochromatic colors that simulate white light).

Seven years ago, when white-light quantum dots were discovered accidentally in a Vanderbilt chemistry lab, their efficiency was too low for commercial applications and several experts predicted that it would be impossible to raise it to practical levels. Today, however, Vanderbilt researchers have proven those predictions wrong by reporting that they have successfully boosted the fluorescent efficiency of these nanocrystals from an original level of three percent to as high as 45 percent.

Potential commercial applications

"Forty-five percent is as high as the efficiency of some commercial phosphors which suggests that white-light quantum dots can now be used in some special lighting applications," said Sandra Rosenthal, the Jack and Pamela Egan Chair of Chemistry, who directed the research which is described online in the Journal of the American Chemical Society. "The fact that we have successfully boosted their efficiency by more than 10 times also means that it should be possible to improve their efficiency even further."

The general measure for the overall efficiency of lighting devices is called luminous efficiency and it measures the amount of visible light (lumens) a device produces per watt. An incandescent light bulb produces about 15 lumens/watt, while a fluorescent tubes put out about 100 lumens/watt. White light LEDs currently on the market range from 28 to 93 lumens/watt.

"We calculate that if you combine our enhanced quantum dots with the most efficient ultraviolet LED, the hybrid device would have a luminous efficiency of about 40 lumens/watt," reported James McBride, research assistant professor of chemistry who has been involved in the research from its inception. "There is lots of room to improve the efficiency of UV LEDS and the improvements would translate directly into a higher efficiencies in the hybrid."

An accidental discovery

Quantum dots were discovered in 1980. They are beads of semiconductor material -- the stuff from which transistors are made -- that are so small that they have unique electronic properties, intermediate between those of bulk semiconductors and individual molecules. One of their useful properties is fluorescence that produces distinctive colors determined by the size of the particles. As the nanocrystal's size shrinks the light it emits shifts from red to blue. The Vanderbilt discovery was that ultra-small quantum dots, containing only 60 to 70 atoms, emit white instead of monochromatic light.

"These quantum dots are so small that almost all of the atoms are on the surface, so the white-light emission is intrinsically a surface phenomena," said Rosenthal.

One of the first methods various groups used in the attempt to brighten the nanocrystals was "shelling" -- growing a shell around them made of a different material, like zinc sulfide. Unfortunately, the shells extinguished the white light effect and the shelled quantum dots produced only colored light.

Chemists followed their noses

Following a lead from some research done at the University of North Carolina, the researchers decided to see if treating the quantum dots with metal salts would have a brightening effect. They noticed that some of the salts seemed to produce a small -- 10 to 20 percent -- but noticeable improvement.

"They were acetate salts and they smelled a bit like acetic acid," said McBride. "We knew that acetic acid binds to the quantum dots so we decided to give it a try."

The decision to follow their nose proved to be fortunate. The acetic acid treatment bumped up the quantum dots fluorescent efficiency from eight percent to 20 percent!

Acetic acid is a member of the carbocyclic acid family. So the researchers tried the other members in the family. They found that the simplest and most acidic member -- formic acid, the chemical that ants use to mark their paths -- worked the best, pushing the efficiency as high as 45 percent.

The brightness boost had an unexpected side effect. It shifted the peak of the color spectrum of the quantum dots slightly into the blue. This is ironic because the major complaint of white-light LEDs is that the light they produce has an unpleasant blue tint. However, the researchers maintain that they know how to correct the color-balance of the boosted light.

The researchers' next step is to test different methods for encapsulating the enhanced quantum dots.

Other contributors to the study include graduate students Teresa E. Rosson, Sarah M. Claiborne and undergraduate research student Benjamin Stratton, who is now at Columbia University.

The work was supported by a grant from the National Science Foundation.


Story Source:

The above story is based on materials provided by Vanderbilt University. The original article was written by David Salisbury. Note: Materials may be edited for content and length.


Journal Reference:

  1. Teresa E. Rosson, Sarah M. Claiborne, James R. McBride, Benjamin S. Stratton, Sandra J. Rosenthal. Bright White Light Emission from Ultrasmall Cadmium Selenide Nanocrystals. Journal of the American Chemical Society, 2012; 120507161037002 DOI: 10.1021/ja300132p

Cite This Page:

Vanderbilt University. "Quantum dots brighten the future of lighting." ScienceDaily. ScienceDaily, 8 May 2012. <www.sciencedaily.com/releases/2012/05/120508173349.htm>.
Vanderbilt University. (2012, May 8). Quantum dots brighten the future of lighting. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2012/05/120508173349.htm
Vanderbilt University. "Quantum dots brighten the future of lighting." ScienceDaily. www.sciencedaily.com/releases/2012/05/120508173349.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins