Featured Research

from universities, journals, and other organizations

Why wiggling in high heels could help improve prosthetic limbs and robots

Date:
May 8, 2012
Source:
Wellcome Trust
Summary:
People walking normally, or tottering in high heels, and ostriches strutting -- they all exert the same forces on the ground despite very differently shaped feet, according to new research. The finding suggests that prosthetic lower limbs and robots' legs could be made more efficient by making them less human-like and more like the prosthetics used by 'Blade Runner' Oscar Pistorius.

People walking normally, women tottering in high heels and ostriches strutting all exert the same forces on the ground despite their very differently shaped feet.
Credit: The Structure and Motion Lab, Royal Veterinary College

People walking normally, or tottering in high heels, and ostriches strutting -- they all exert the same forces on the ground despite their very differently shaped feet, according to research funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council. The finding suggests that prosthetic lower limbs and robots' legs could be made more efficient by making them less human-like and more like the prosthetics used by 'Blade Runner' Oscar Pistorius.

Related Articles


Walking involves a repeated process referred to by scientists as 'crash, vault, push' -- landing ('crashing') on the heel, vaulting over the stationary leg and then pushing off with the toes. This is the most economical way of walking and, as research published May 8 in the Journal of the Royal Society Interface shows, the force exerted on the ground is the same for people walking normally or in high heels and for ostriches.

Dr Tatjana Hubel from the Royal Veterinary College explains: "Despite vastly differing arrangements of joints and hip wiggles, humans walking normally, women in extremely high heels and ostriches all produce strikingly similar forces when walking. This is the most mechanically economical way of walking.

"We do everything we can to make the forces follow the same pattern, which is why -- for example -- women wiggle their bottoms when they are in high heels. The question for us is, why is the human foot shaped the way that it is and not, say, like an ostrich's?"

When scientists model how the leg moves, they tend to simplify the movement and view the leg as a stick with a block on top (the body), which moves in an inverted pendulum motion. In this simplified model, the shape of the human foot does not make sense.

In reality, however, the human leg is more complicated than this; it contains muscles that probably evolved out of a tension between being optimised for walking and being more efficient at running. Because humans are intelligent and can plan and use tools, being able to move quickly to catch prey or evade a predator is not essential.

The shape of the human foot means that when the foot is flat on the ground, all the force goes through the ankles, allowing the muscles to support the weight of the body while being largely unloaded during the 'vault' stage. When muscles bear a load, they get tired easily, even if they are doing no work. For example, if we hold our arms outstretched, after a few minutes they will grow tired; by comparison, a JCB digger can extend its arm indefinitely.

The researchers believe this finding might have implications for the design of better prosthetic limbs for above-knee amputees and for the legs of humanoid robots. These might be improved by bearing more resemblance to an ostrich leg than that of a human.

Dr Jim Usherwood, a Wellcome Trust Senior Research Fellow at the Royal Veterinary College, explains: "If you want to make a good prosthetic foot but don't care what it looks like, you should put the motor -- in this case, the ankle -- as far up the leg as possible, where it can provide the power without making the feet heavy and hard to swing backwards and forwards. There's no point in putting the motor at the end of the foot, where it makes the leg more difficult to swing forwards -- important in both walking and running.

"Some clever prosthetics copy the ankle and are very human-like, which is fine for prosthetics to replace the foot, but for above-knee amputees, a typical prosthetic leg that is very human-like is heavy and hard to move around. It's much better to have an ostrich foot at the end of a very lightweight leg."

One example of this kind of prosthetic already in use is the blades used by Paralympic athlete Oscar Pistorius -- the 'Blade Runner'. These blades are light, springy and without a heel, similar to an ostrich's legs, which are optimised for running from predators rather than for walking.


Story Source:

The above story is based on materials provided by Wellcome Trust. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Y. Hubel, N. I. Hristov, S. M. Swartz, K. S. Breuer. Changes in kinematics and aerodynamics over a range of speeds in Tadarida brasiliensis, the Brazilian free-tailed bat. Journal of The Royal Society Interface, 2012; 9 (71): 1120 DOI: 10.1098/rsif.2011.0838

Cite This Page:

Wellcome Trust. "Why wiggling in high heels could help improve prosthetic limbs and robots." ScienceDaily. ScienceDaily, 8 May 2012. <www.sciencedaily.com/releases/2012/05/120508220116.htm>.
Wellcome Trust. (2012, May 8). Why wiggling in high heels could help improve prosthetic limbs and robots. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2012/05/120508220116.htm
Wellcome Trust. "Why wiggling in high heels could help improve prosthetic limbs and robots." ScienceDaily. www.sciencedaily.com/releases/2012/05/120508220116.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins