Featured Research

from universities, journals, and other organizations

New silicon memory chip may offer super-fast memory

Date:
May 18, 2012
Source:
University College London
Summary:
The first purely silicon oxide-based "resistive RAM" memory chip that can operate in ambient conditions -- opening up the possibility of new super-fast memory -- has now been developed.

A photo of the UCL ReRAM device.
Credit: UCL/Adnan Mehonic

The first purely silicon oxide-based 'Resistive RAM' memory chip that can operate in ambient conditions -- opening up the possibility of new super-fast memory -- has been developed by researchers at UCL.

Resistive RAM (or 'ReRAM') memory chips are based on materials, most often oxides of metals, whose electrical resistance changes when a voltage is applied -- and they "remember" this change even when the power is turned off.

ReRAM chips promise significantly greater memory storage than current technology, such as the Flash memory used on USB sticks, and require much less energy and space.

The UCL team have developed a novel structure composed of silicon oxide, described in a recent paper in the Journal of Applied Physics, which performs the switch in resistance much more efficiently than has been previously achieved. In their material, the arrangement of the silicon atoms changes to form filaments of silicon within the solid silicon oxide, which are less resistive. The presence or absence of these filaments represents a 'switch' from one state to another.

Unlike other silicon oxide chips currently in development, the UCL chip does not require a vacuum to work, and is therefore potentially cheaper and more durable. The design also raises the possibility of transparent memory chips for use in touch screens and mobile devices.

The team have been backed by UCLB, UCL's technology transfer company, and have recently filed a patent on their device. Discussions are ongoing with a number of leading semiconductor companies.

Dr Tony Kenyon, UCL Electronic and Electrical Engineering, said: "Our ReRAM memory chips need just a thousandth of the energy and are around a hundred times faster than standard Flash memory chips. The fact that the device can operate in ambient conditions and has a continuously variable resistance opens up a huge range of potential applications.

"We are also working on making a quartz device with a view to developing transparent electronics."

For added flexibility, the UCL devices can also be designed to have a continuously variable resistance that depends on the last voltage that was applied. This is an important property that allows the device to mimic how neurons in the brain function. Devices that operate in this way are sometimes known as 'memristors'.

This technology is currently of enormous interest, with the first practical memristor, based on titanium dioxide, demonstrated in just 2008. The development of a silicon oxide memristor is a huge step forward because of the potential for its incorporation into silicon chips.

The team's new ReRAM technology was discovered by accident whilst engineers at UCL were working on using the silicon oxide material to produce silicon-based LEDs. During the course of the project, researchers noticed that their devices appeared to be unstable.

UCL PhD student, Adnan Mehonic, was asked to look specifically at the material's electrical properties. He discovered that the material wasn't unstable at all, but flipped between various conducting and non-conducting states very predictably.

Adnan Mehonic, also from the UCL Department of Electronic and Electrical Engineering, said: "My work revealed that a material we had been looking at for some time could in fact be made into a memristor.

"The potential for this material is huge. During proof of concept development we have shown we can programme the chips using the cycle between two or more states of conductivity. We're very excited that our devices may be an important step towards new silicon memory chips."

The technology has promising applications beyond memory storage. The team are also exploring using the resistance properties of their material not just for use in memory but also as a computer processor.

The work was funded by the Engineering and Physical Sciences Research Council.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adnan Mehonic, Sébastien Cueff, Maciej Wojdak, Stephen Hudziak, Olivier Jambois, Christophe Labbé, Blas Garrido, Richard Rizk, Anthony J. Kenyon. Resistive switching in silicon suboxide films. Journal of Applied Physics, 2012; 111 (7): 074507 DOI: 10.1063/1.3701581

Cite This Page:

University College London. "New silicon memory chip may offer super-fast memory." ScienceDaily. ScienceDaily, 18 May 2012. <www.sciencedaily.com/releases/2012/05/120518132549.htm>.
University College London. (2012, May 18). New silicon memory chip may offer super-fast memory. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2012/05/120518132549.htm
University College London. "New silicon memory chip may offer super-fast memory." ScienceDaily. www.sciencedaily.com/releases/2012/05/120518132549.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

'Robotic Eyes' Helps Japan's Bipedal Bot Run Faster

Reuters - Innovations Video Online (Oct. 16, 2014) Japanese researcher uses an eye-sensor camera to enable a bipedal robot to balance itself, while running on a treadmill. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Lockheed Martin's Fusion Concept Basically An Advertisement

Lockheed Martin's Fusion Concept Basically An Advertisement

Newsy (Oct. 15, 2014) Lockheed Martin announced plans to develop the first-ever compact nuclear fusion reactor. But some experts said the excitement is a little premature. Video provided by Newsy
Powered by NewsLook.com
First Confirmed Case Of Google Glass Addiction

First Confirmed Case Of Google Glass Addiction

Buzz60 (Oct. 15, 2014) A Google Glass user was treated for Internet Addiction Disorder caused from overuse of the device. Morgan Manousos (@MorganManousos) has the details on how many hours he spent wearing the glasses, and what his symptoms were. Video provided by Buzz60
Powered by NewsLook.com
Science Proves Why Pizza Is So Delicious

Science Proves Why Pizza Is So Delicious

Buzz60 (Oct. 15, 2014) The American Chemical Society’s latest video about chemistry in every day life breaks down pizza, and explains exactly why it's so delicious. Gillian Pensavalle (@GillianWithaG) has the video. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins